Liu Yasmine J, Sulc Jonathan, Auwerx Johan
Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Cell Biol. 2025 Mar;27(3):393-407. doi: 10.1038/s41556-025-01625-w. Epub 2025 Mar 10.
Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.
线粒体是多面性的细胞器,在能量生成、细胞信号传导及一系列合成途径中发挥着关键作用。线粒体生物学的研究因线粒体自身的小基因组而变得复杂,该基因组通过母系遗传,不发生重组,且以多个可能不同的拷贝形式存在。近期的方法学进展使得在大规模队列中分析线粒体DNA(mtDNA)成为可能,并凸显了线粒体遗传变异的深远影响。基因组编辑技术已被应用于靶向mtDNA,进一步推动了线粒体基因的功能分析。线粒体是经过精细调节的信号枢纽,这一概念因研究线粒体蛋白质和蛋白质复合物功能的方法学进展而得到拓展。线粒体呼吸复合物具有双重遗传起源,线粒体和核基因表达系统(转录和翻译)之间需要密切协调才能实现正确组装和功能,近期的研究结果凸显了线粒体在这种双向信号传导中的重要性。