Suppr超能文献

通过使用通路级图卷积网络预测药物反应来实现非小细胞肺癌的药物重新利用。

Drug repurposing for non-small cell lung cancer by predicting drug response using pathway-level graph convolutional network.

作者信息

Anjusha I T, Abdul Nazeer K A, Saleena N

机构信息

Department of Computer Science and Engineering, National Institute of Technology Calicut, Kozhikode, India.

出版信息

J Bioinform Comput Biol. 2025 Feb;23(1):2550001. doi: 10.1142/S0219720025500015. Epub 2025 Mar 25.

Abstract

Drug repurposing is the process of identifying new clinical indications for an existing drug. Some of the recent studies utilized drug response prediction models to identify drugs that can be repurposed. By representing cell-line features as a pathway-pathway interaction network, we can better understand the connections between cellular processes and drug response mechanisms. Existing deep learning models for drug response prediction do not integrate known biological pathway-pathway interactions into the model. This paper presents a drug response prediction model that applies a graph convolution operation on a pathway-pathway interaction network to represent features of cancer cell-lines effectively. The model is used to identify potential drug repurposing candidates for Non-Small Cell Lung Cancer (NSCLC). Experiment results show that the inclusion of graph convolutional model applied on a pathway-pathway interaction network makes the proposed model more effective in predicting drug response than the state-of-the-art methods. Specifically, the model has shown better performance in terms of Root Mean Squared Error, Coefficient of Determination, and Pearson's Correlation Coefficient when applied to the GDSC1000 dataset. Also, most of the drugs that the model predicted as top candidates for NSCLC treatment are either undergoing clinical studies or have some evidence in the PubMed literature database.

摘要

药物重新利用是指为现有药物确定新的临床适应症的过程。最近的一些研究利用药物反应预测模型来识别可重新利用的药物。通过将细胞系特征表示为通路-通路相互作用网络,我们可以更好地理解细胞过程与药物反应机制之间的联系。现有的用于药物反应预测的深度学习模型没有将已知的生物通路-通路相互作用整合到模型中。本文提出了一种药物反应预测模型,该模型在通路-通路相互作用网络上应用图卷积运算,以有效地表示癌细胞系的特征。该模型用于识别非小细胞肺癌(NSCLC)潜在的药物重新利用候选药物。实验结果表明,在通路-通路相互作用网络上应用图卷积模型使得所提出的模型在预测药物反应方面比现有最先进的方法更有效。具体而言,当应用于GDSC1000数据集时,该模型在均方根误差、决定系数和皮尔逊相关系数方面表现出更好的性能。此外,该模型预测为NSCLC治疗的顶级候选药物中的大多数要么正在进行临床研究,要么在PubMed文献数据库中有一些证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验