Suppr超能文献

通过蛋白质冠层分析实现人工智能驱动的心脏肿瘤生物标志物预测

AI-Driven Prediction of Cardio-Oncology Biomarkers Through Protein Corona Analysis.

作者信息

Guha Avirup, Sadeghi Seyed Amirhossein, Kunhiraman Harikrishnan Hyma, Fang Fei, Wang Qianyi, Rafieioskouei Arshia, Grumelot Shaun, Gharibi Hassan, Saei Amir Ata, Sayadi Maryam, Weintraub Neal L, Horibata Sachi, Yang Phillip Chung-Ming, Bonakdarpour Borzoo, Ghassemi Mohammad, Sun Liangliang, Mahmoudi Morteza

机构信息

Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States.

Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, United States.

出版信息

Chem Eng J. 2025 Apr;509. doi: 10.1016/j.cej.2025.161134. Epub 2025 Mar 1.

Abstract

Protein corona, a layer predominantly composed of proteins and other biomolecules that forms on nanoparticle surfaces upon interaction with biological fluids, has recently been extensively utilized to enhance the depth of plasma proteomics and biomarker discovery. In this study, we integrate protein corona profiling with mass spectrometry (MS)-based bottom-up proteomics (BUP), machine learning, and causality analysis to identify potential biomarkers in the field of cardio-oncology. We selected prostate cancer (PC) and atherosclerosis as model cardio-oncology diseases, given that PC is the most prevalent cancer among men in the United States and frequently coexists with atherosclerotic cardiovascular disease (ASCVD), which contributes to the progression of metastatic PC (mPC). Protein corona profiles were generated from 35 plasma samples categorized into four groups: mPC with ASCVD, nonmetastatic PC (nmPC) with ASCVD, mPC without ASCVD, and nmPC without ASCVD. MS-based BUP analysis identified 887 unique proteins within the protein corona. Gene Ontology (GO) analysis of the 260 proteins common to all samples revealed key plasma proteomic pathways significantly associated with ASCVD and mPC. Using Least Absolute Shrinkage and Selection Operator (LASSO) regularization, we isolated 22 proteins strongly associated with ASCVD or mPC, including chaperonin containing TCP1 subunit 7 (CCT7), which was common to both conditions. Automated formal reasoning and causality analysis of these 22 proteins identified thromboxane-A synthase 1 (TBXAS1) as a primary causal factor linked to both ASCVD and mPC. TBXAS1 plays a critical role in promoting platelet aggregation, vascular smooth muscle cell proliferation, endothelial dysfunction, and thrombosis. In this proof-of-concept study, CCT7 and TBXAS1 emerged as potential biomarkers for both ASCVD and mPC, suggesting their utility as dual biomarkers for early detection and targeted therapeutic interventions. By combining nanomedicine with advanced analytical methods, our integrated approach provides a robust framework for uncovering causal relationships between biomarkers and disease states.

摘要

蛋白质冠层是纳米颗粒表面与生物流体相互作用时形成的一层主要由蛋白质和其他生物分子组成的物质,最近已被广泛用于提高血浆蛋白质组学的深度和生物标志物的发现。在本研究中,我们将蛋白质冠层分析与基于质谱(MS)的自下而上蛋白质组学(BUP)、机器学习和因果分析相结合,以识别心脏肿瘤学领域的潜在生物标志物。鉴于前列腺癌(PC)是美国男性中最常见的癌症,且常与动脉粥样硬化性心血管疾病(ASCVD)共存,而后者会促进转移性PC(mPC)的进展,我们选择前列腺癌(PC)和动脉粥样硬化作为心脏肿瘤学疾病的模型。蛋白质冠层图谱由35份血浆样本生成,这些样本分为四组:伴有ASCVD的mPC、伴有ASCVD的非转移性PC(nmPC)、不伴有ASCVD的mPC和不伴有ASCVD的nmPC。基于MS的BUP分析在蛋白质冠层中鉴定出887种独特蛋白质。对所有样本共有的260种蛋白质进行基因本体论(GO)分析,揭示了与ASCVD和mPC显著相关的关键血浆蛋白质组学途径。使用最小绝对收缩和选择算子(LASSO)正则化,我们分离出22种与ASCVD或mPC密切相关的蛋白质,其中包括伴侣蛋白含TCP1亚基7(CCT7),这两种情况都有。对这22种蛋白质进行自动形式推理和因果分析,确定血栓素-A合酶1(TBXAS1)是与ASCVD和mPC相关的主要因果因素。TBXAS1在促进血小板聚集、血管平滑肌细胞增殖、内皮功能障碍和血栓形成中起关键作用。在这项概念验证研究中,CCT7和TBXAS1成为ASCVD和mPC的潜在生物标志物,表明它们作为双重生物标志物在早期检测和靶向治疗干预中的效用。通过将纳米医学与先进的分析方法相结合,我们的综合方法为揭示生物标志物与疾病状态之间的因果关系提供了一个强大的框架。

相似文献

1
AI-Driven Prediction of Cardio-Oncology Biomarkers Through Protein Corona Analysis.
Chem Eng J. 2025 Apr;509. doi: 10.1016/j.cej.2025.161134. Epub 2025 Mar 1.
2
5
Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster.
J Proteomics. 2020 Aug 15;225:103879. doi: 10.1016/j.jprot.2020.103879. Epub 2020 Jun 30.
6
Universal Risk Prediction for Individuals With and Without Atherosclerotic Cardiovascular Disease.
J Am Coll Cardiol. 2024 Feb 6;83(5):562-573. doi: 10.1016/j.jacc.2023.11.028.
7
Serum proteomic profiling of carotid arteriopathy: A population outcome study.
Atherosclerosis. 2023 Nov;385:117331. doi: 10.1016/j.atherosclerosis.2023.117331. Epub 2023 Oct 10.
8
Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
Acc Chem Res. 2021 Jan 19;54(2):291-301. doi: 10.1021/acs.accounts.0c00413. Epub 2020 Nov 12.
9
Proteomic profiling of low muscle and high fat mass: a machine learning approach in the KORA S4/FF4 study.
J Cachexia Sarcopenia Muscle. 2021 Aug;12(4):1011-1023. doi: 10.1002/jcsm.12733. Epub 2021 Jun 20.

引用本文的文献

1
Enhancing detection and monitoring of circulating tumor cells: Integrative approaches in liquid biopsy advances.
J Liq Biopsy. 2025 Apr 29;8:100297. doi: 10.1016/j.jlb.2025.100297. eCollection 2025 Jun.

本文引用的文献

1
Atherosclerotic Cardiovascular Diseases Are Associated With Incident Metastatic and Nonmetastatic Cancer.
JACC CardioOncol. 2024 Oct 1;6(6):949-961. doi: 10.1016/j.jaccao.2024.07.020. eCollection 2024 Dec.
2
Atlas of the plasma proteome in health and disease in 53,026 adults.
Cell. 2025 Jan 9;188(1):253-271.e7. doi: 10.1016/j.cell.2024.10.045. Epub 2024 Nov 22.
3
Small molecule modulation of protein corona for deep plasma proteome profiling.
Nat Commun. 2024 Nov 7;15(1):9638. doi: 10.1038/s41467-024-53966-z.
4
Rediscovering citrate as a biomarker for prostate cancer.
Nat Rev Urol. 2024 Oct;21(10):573-575. doi: 10.1038/s41585-024-00899-3.
5
Multi-omics exploration of biomolecular corona in nanomedicine therapeutics and diagnostics.
Nanomedicine (Lond). 2024;19(14):1223-1226. doi: 10.2217/nnm-2024-0104. Epub 2024 Apr 9.
6
Proteomics of prostate cancer serum and plasma using low and high throughput approaches.
Clin Proteomics. 2024 Mar 12;21(1):21. doi: 10.1186/s12014-024-09461-0.
7
Cancer statistics, 2024.
CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49. doi: 10.3322/caac.21820. Epub 2024 Jan 17.
8
Controlling Risk Factors Reduces Cancer Risk in Patients with Atherosclerotic Cardiovascular Disease: A Cohort Study.
Am J Med. 2024 Apr;137(4):341-349.e7. doi: 10.1016/j.amjmed.2023.12.003. Epub 2023 Dec 21.
9
Real-world treatment patterns and overall survival among men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) in the US Medicare population.
Prostate Cancer Prostatic Dis. 2024 Jun;27(2):327-333. doi: 10.1038/s41391-023-00725-8. Epub 2023 Oct 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验