Suppr超能文献

通过释放硫化氢的肽纳米乳液对植入物生物膜进行非侵入性超声清创

Non-invasive ultrasonic debridement of implant biofilms via hydrogen-sulfide releasing peptide nanoemulsions.

作者信息

Singh Harminder, Biswas Diptomit, Park Ji Ho, Landmesser Mary E, Ravnic Dino J, Medina Scott H

机构信息

Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA.

Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802-4400, USA.

出版信息

Biomaterials. 2025 Oct;321:123337. doi: 10.1016/j.biomaterials.2025.123337. Epub 2025 Apr 9.

Abstract

Implant contamination by bacterial biofilms remains a significant healthcare burden, often necessitating revision surgeries due to biofilm-enabled antibiotic resistance. Physical debridement, in combination with chemical antiseptics, is a simple and effective therapeutic strategy, but requires highly invasive surgical procedures and risks secondary infection events. Herein, we report a non-invasive, nanoparticle-enabled ultrasonic debridement strategy that exerts synergistic physical and chemical antiseptic effects to rapidly and efficiently clear implant-associated biofilms in situ. This approach is realized through the development of hydrogen sulfide releasing peptide nanoemulsions that preferentially target bacterial biofilms and can be vaporized via diagnostic ultrasound to spatiotemporally clear methicillin-resistant Staphylococcus aureus (MRSA) infections. Biophysical studies elucidate the mechanistic basis for the platform's anti-biofilm activity, and in vitro, ex vivo and in vivo experiments confirm efficacy in the context of MRSA-infected titanium implants. By exploiting the portable, low cost and safe nature of low intensity diagnostic ultrasound, this non-invasive approach avoids the collateral tissue damage associated with current surgical and high intensity acoustic ablative modalities.

摘要

细菌生物膜引起的植入物污染仍然是一个重大的医疗负担,由于生物膜导致的抗生素耐药性,常常需要进行翻修手术。物理清创术与化学防腐剂相结合是一种简单有效的治疗策略,但需要高度侵入性的外科手术,并且存在继发感染事件的风险。在此,我们报告一种非侵入性的、基于纳米颗粒的超声清创策略,该策略发挥协同的物理和化学防腐作用,以快速有效地原位清除与植入物相关的生物膜。这种方法是通过开发释放硫化氢的肽纳米乳液来实现的,该纳米乳液优先靶向细菌生物膜,并可通过诊断超声汽化,以时空方式清除耐甲氧西林金黄色葡萄球菌(MRSA)感染。生物物理研究阐明了该平台抗生物膜活性的机制基础,体外、离体和体内实验证实了其在MRSA感染的钛植入物情况下的有效性。通过利用低强度诊断超声的便携、低成本和安全特性,这种非侵入性方法避免了与当前手术和高强度声学消融方式相关的附带组织损伤。

相似文献

1
Non-invasive ultrasonic debridement of implant biofilms via hydrogen-sulfide releasing peptide nanoemulsions.
Biomaterials. 2025 Oct;321:123337. doi: 10.1016/j.biomaterials.2025.123337. Epub 2025 Apr 9.
2
Nanoscale surface modifications on Titanium plates- A strategy to mitigate MRSA biofilm-mediated implant infections: A pilot study.
Microb Pathog. 2025 Jun;203:107481. doi: 10.1016/j.micpath.2025.107481. Epub 2025 Mar 13.
3
Optimal irrigation and debridement of infected joint implants: an in vitro methicillin-resistant Staphylococcus aureus biofilm model.
J Arthroplasty. 2011 Sep;26(6 Suppl):109-13. doi: 10.1016/j.arth.2011.03.042. Epub 2011 Jun 8.
10
Antibacterial Activity in Iodine-coated Implants Under Conditions of Iodine Loss: Study in a Rat Model Plus In Vitro Analysis.
Clin Orthop Relat Res. 2021 Jul 1;479(7):1613-1623. doi: 10.1097/CORR.0000000000001753.

本文引用的文献

1
Ultrasonic disruption of circulating amyloid β aggregates via phase-change peptide nanoemulsions.
Biomaterials. 2025 Jul;318:123146. doi: 10.1016/j.biomaterials.2025.123146. Epub 2025 Jan 25.
2
Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants.
Small. 2024 Nov;20(46):e2404351. doi: 10.1002/smll.202404351. Epub 2024 Aug 19.
4
Recent design strategies for boosting chemodynamic therapy of bacterial infections.
Exploration (Beijing). 2023 Oct 17;4(2):20230087. doi: 10.1002/EXP.20230087. eCollection 2024 Apr.
6
The Economics of Revision Arthroplasty for Periprosthetic Joint Infection.
Arthroplast Today. 2023 Sep 16;23:101213. doi: 10.1016/j.artd.2023.101213. eCollection 2023 Oct.
7
Real-Time, In Situ Imaging of Macrophages via Phase-Change Peptide Nanoemulsions.
Small. 2023 Nov;19(46):e2301673. doi: 10.1002/smll.202301673. Epub 2023 Jul 14.
8
Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion.
Langmuir. 2023 Apr 18;39(15):5426-5439. doi: 10.1021/acs.langmuir.3c00091. Epub 2023 Apr 4.
9
Local delivery of gaseous signaling molecules for orthopedic disease therapy.
J Nanobiotechnology. 2023 Feb 21;21(1):58. doi: 10.1186/s12951-023-01813-6.
10
Subcellular Delivery of Hydrogen Sulfide Using Small Molecule Donors Impacts Organelle Stress.
J Am Chem Soc. 2022 Sep 28;144(38):17651-17660. doi: 10.1021/jacs.2c07225. Epub 2022 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验