Suppr超能文献

TSCMamba:用于时间序列分类的Mamba与多视图学习相结合

TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification.

作者信息

Ahamed Md Atik, Cheng Qiang

机构信息

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA.

出版信息

Inf Fusion. 2025 Aug;120. doi: 10.1016/j.inffus.2025.103079. Epub 2025 Mar 20.

Abstract

Multivariate time series classification (TSC) is critical for various applications in fields such as healthcare and finance. While various approaches for TSC have been explored, important properties of time series, such as shift equivariance and inversion invariance, are largely underexplored by existing works. To fill this gap, we propose a novel multi-view approach to capture patterns with properties like shift equivariance. Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC. We use continuous wavelet transform to capture time-frequency features that remain consistent even when the input is shifted in time. These features are fused with temporal convolutional or multilayer perceptron features to provide complex local and global contextual information. We utilize the Mamba state space model for efficient and scalable sequence modeling and capturing long-range dependencies in time series. Moreover, we introduce a new scanning scheme for Mamba, called tango scanning, to effectively model sequence relationships and leverage inversion invariance, thereby enhancing our model's generalization and robustness. Experiments on two sets of benchmark datasets (10+20 datasets) demonstrate our approach's effectiveness, achieving average accuracy improvements of 4.01-6.45% and 7.93% respectively, over leading TSC models such as TimesNet and TSLANet. The code is available at: https://drive.google.com/file/d/1fScmALgreb_sE9_P2kIsQCmt9SNxp7GP/view?usp=sharing.

摘要

多变量时间序列分类(TSC)对于医疗保健和金融等领域的各种应用至关重要。虽然已经探索了各种TSC方法,但时间序列的重要属性,如平移不变性和反转不变性,在现有工作中很大程度上未得到充分研究。为了填补这一空白,我们提出了一种新颖的多视图方法来捕获具有平移不变性等属性的模式。我们的方法整合了多种特征,包括频谱、时间、局部和全局特征,以获得丰富、互补的上下文用于TSC。我们使用连续小波变换来捕获即使输入在时间上发生偏移时仍保持一致的时频特征。这些特征与时间卷积或多层感知器特征融合,以提供复杂的局部和全局上下文信息。我们利用曼巴状态空间模型进行高效且可扩展的序列建模,并捕获时间序列中的长程依赖关系。此外,我们为曼巴引入了一种新的扫描方案,称为探戈扫描,以有效地建模序列关系并利用反转不变性,从而提高我们模型的泛化能力和鲁棒性。在两组基准数据集(10 + 20个数据集)上的实验证明了我们方法的有效性,分别比TimesNet和TSLANet等领先的TSC模型平均准确率提高了4.01 - 6.45%和7.93%。代码可在以下链接获取:https://drive.google.com/file/d/1fScmALgreb_sE9_P2kIsQCmt9SNxp7GP/view?usp=sharing

相似文献

1
TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification.
Inf Fusion. 2025 Aug;120. doi: 10.1016/j.inffus.2025.103079. Epub 2025 Mar 20.
2
MMR-Mamba: Multi-modal MRI reconstruction with Mamba and spatial-frequency information fusion.
Med Image Anal. 2025 May;102:103549. doi: 10.1016/j.media.2025.103549. Epub 2025 Mar 21.
5
Multi-resolution visual Mamba with multi-directional selective mechanism for retinal disease detection.
Front Cell Dev Biol. 2024 Oct 11;12:1484880. doi: 10.3389/fcell.2024.1484880. eCollection 2024.
6
MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning.
Ann N Y Acad Sci. 2025 Feb;1544(1):242-253. doi: 10.1111/nyas.15288. Epub 2025 Jan 22.
7
VMKLA-UNet: vision Mamba with KAN linear attention U-Net.
Sci Rep. 2025 Apr 17;15(1):13258. doi: 10.1038/s41598-025-97397-2.
8
Non-invasive enhanced hypertension detection through ballistocardiograph signals with Mamba model.
PeerJ Comput Sci. 2025 Feb 21;11:e2711. doi: 10.7717/peerj-cs.2711. eCollection 2025.
9
An efficient fire detection algorithm based on Mamba space state linear attention.
Sci Rep. 2025 Apr 2;15(1):11289. doi: 10.1038/s41598-025-95162-z.

引用本文的文献

1
Prediction of bone oligometastases in breast cancer using models based on deep learning radiomics of PET/CT imaging.
Front Oncol. 2025 Aug 21;15:1621677. doi: 10.3389/fonc.2025.1621677. eCollection 2025.

本文引用的文献

1
TimeMachine: A Time Series is Worth 4 Mambas for Long-Term Forecasting.
ECAI 2024 (2024). 2024;392:1688-1695. doi: 10.3233/faia240677.
2
Fine-Grained Essential Tensor Learning for Robust Multi-View Spectral Clustering.
IEEE Trans Image Process. 2024;33:3145-3160. doi: 10.1109/TIP.2024.3388969. Epub 2024 May 1.
3
Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.
Neural Netw. 2018 Nov;107:3-11. doi: 10.1016/j.neunet.2017.12.012. Epub 2018 Jan 11.
4
Generalizing DTW to the multi-dimensional case requires an adaptive approach.
Data Min Knowl Discov. 2017 Jan;31(1):1-31. doi: 10.1007/s10618-016-0455-0. Epub 2016 Feb 15.
5
Generalized Models for the Classification of Abnormal Movements in Daily Life and its Applicability to Epilepsy Convulsion Recognition.
Int J Neural Syst. 2016 Sep;26(6):1650037. doi: 10.1142/S0129065716500374. Epub 2016 Apr 26.
6
Flying insect detection and classification with inexpensive sensors.
J Vis Exp. 2014 Oct 15(92):e52111. doi: 10.3791/52111.
7
A database of Caenorhabditis elegans behavioral phenotypes.
Nat Methods. 2013 Sep;10(9):877-9. doi: 10.1038/nmeth.2560. Epub 2013 Jul 14.
8
Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
9
10
A spelling device for the paralysed.
Nature. 1999 Mar 25;398(6725):297-8. doi: 10.1038/18581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验