Suppr超能文献

新冠病毒感染患者中口服阿兹夫定与奈玛特韦-利托那韦的复合结局:一项回顾性队列研究

Composite outcome of oral azvudine vs. nirmatrelvir-ritonavir in COVID-19 patients: a retrospective cohort study.

作者信息

Chen Jingxia, Liu Zhengyue, Liu Ruolin, Su Chengxin, Yang Yunyun, Wang Zhuo

机构信息

Department of Pharmacy, Shanghai Changhai Hospital, The First Affiliated Hospital of Navy Medical University, Shanghai, China.

出版信息

Front Pharmacol. 2025 Apr 4;16:1546787. doi: 10.3389/fphar.2025.1546787. eCollection 2025.

Abstract

OBJECTIVE

To explore the effectiveness and safety of azvudine and nirmatrelvir-ritonavir in a real-world setting.

METHODS

This retrospective cohort study included adult patients with confirmed COVID-19 who received azvudine or nirmatrelvir-ritonavir treatment at Shanghai Changhai Hospital between 1 November 2022, and 30 March 2023. Data were collected from the hospital's electronic medical record system using a standardized data extraction form. Propensity score matching (PSM) was used to control for potential confounding factors. The primary outcome was the incidence of composite disease progression, defined as the occurrence of death, ICU admission, invasive respiratory support, or high-flow oxygen therapy. Multivariable Cox regression analysis was performed to identify the factors independently associated with the composite progression outcomes.

RESULTS

This study included 476 patients: 296 treated with azvudine and 180 treated with nirmatrelvir-ritonavir. After PSM, 139 patients were included in each group. There were no statistically significant differences between the two groups regarding the composite outcome (log-rank: P = 0.475; HR: 0.82, 95%CI: 0.46-1.43, P = 0.478), death (log-rank: P = 0.526; HR: 0.82, 95%CI: 0.44-1.52, P = 0.528), ICU admission (log-rank: P = 0.525; HR: 0.69, 95%CI: 0.22-2.18, P = 0.526), invasive ventilation (log-rank: P = 0.814; HR: 1.20, 95%CI: 0.27-5.39, P = 0.814), or oxygen use (log-rank: P = 0.370; HR: 1.44, 95%CI: 0.65-3.18, P = 0.372). The multivariable analysis showed that the antiviral drug (HR = 0.861, 95%CI: 0.486-1.524, P = 0.607) was not independently associated with the composite outcome. Only severe COVID-19 was independently associated with the composite outcome (HR = 3.322, 95%CI: 1.569-7.031, P = 0.002). The safety outcomes were similar between the two groups.

CONCLUSION

This real-world study demonstrates comparable efficacy and safety profiles between azvudine and nirmatrelvir-ritonavir in treating COVID-19 patients, regardless of disease severity or baseline characteristics. The findings support azvudine as a practical alternative for treatment selection, particularly in resource-constrained settings or for patients with contraindications to specific therapies. Clinical decisions should prioritize patient-specific needs, accessibility, and cost-effectiveness. Further large-scale prospective studies are needed to validate these observations and refine subgroup-specific treatment strategies.

摘要

目的

探讨阿兹夫定和奈玛特韦-利托那韦在实际临床环境中的有效性和安全性。

方法

这项回顾性队列研究纳入了2022年11月1日至2023年3月30日期间在上海长海医院接受阿兹夫定或奈玛特韦-利托那韦治疗的确诊COVID-19成年患者。使用标准化数据提取表从医院电子病历系统收集数据。采用倾向评分匹配(PSM)来控制潜在的混杂因素。主要结局是复合疾病进展的发生率,定义为死亡、入住重症监护病房(ICU)、接受有创呼吸支持或高流量氧疗的发生情况。进行多变量Cox回归分析以确定与复合进展结局独立相关的因素。

结果

本研究纳入476例患者:296例接受阿兹夫定治疗,180例接受奈玛特韦-利托那韦治疗。PSM后,每组纳入139例患者。两组在复合结局(对数秩检验:P = 0.475;风险比[HR]:0.82,95%置信区间[CI]:0.46 - 1.43,P = 0.478)、死亡(对数秩检验:P = 0.526;HR:0.82,95%CI:0.44 - 1.52,P = 0.528)、入住ICU(对数秩检验:P = 0.525;HR:0.69,95%CI:0.22 - 2.18,P = 0.526)、有创通气(对数秩检验:P = 0.814;HR:1.20,95%CI:0.27 - 5.39,P = 0.814)或氧疗使用(对数秩检验:P = 0.370;HR:1.44,95%CI:0.65 - 3.18,P = 0.372)方面均无统计学显著差异。多变量分析显示,抗病毒药物(HR = 0.861,95%CI:0.486 - 1.524,P = 0.607)与复合结局无独立相关性。只有重症COVID-19与复合结局独立相关(HR = 3.322,95%CI:1.569 - 7.031,P = 0.002)。两组的安全性结局相似。

结论

这项真实世界研究表明,阿兹夫定和奈玛特韦-利托那韦在治疗COVID-19患者方面具有相当的疗效和安全性,无论疾病严重程度或基线特征如何。这些发现支持阿兹夫定作为治疗选择的一种实用替代方案,特别是在资源有限的环境中或对于有特定疗法禁忌证的患者。临床决策应优先考虑患者的具体需求、可及性和成本效益。需要进一步的大规模前瞻性研究来验证这些观察结果并完善亚组特异性治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab50/12006181/dd97e6267a28/fphar-16-1546787-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验