Riedelbauch Sebastian, Masser Sarah, Fasching Sandra, Lin Sung-Ya, Salgania Harpreet Kaur, Aarup Mie, Ebert Anja, Jeske Mandy, Levine Mia T, Stelzl Ulrich, Andersen Peter
Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria.
EMBO J. 2025 Apr 24. doi: 10.1038/s44318-025-00439-8.
Despite being essential for fertility, genome-defense-pathway genes often evolve rapidly. However, little is known about the molecular basis of this adaptation. Here, we characterized the evolution of a protein interaction network within the PIWI-interacting small RNA (piRNA) genome-defense pathway in Drosophila at unprecedented scale and evolutionary resolution. We uncovered the pervasive rapid evolution of a protein interaction network anchored at the heterochromatin protein 1 (HP1) paralog Rhino. Through cross-species high-throughput yeast-two-hybrid screening, we identified three distinct evolutionary protein interaction trajectories across ~40 million years of Drosophila evolution. While several protein interactions are fully conserved, indicating functional conservation despite rapid amino acid-sequence change, other interactions are preserved through coevolution and were detected only between proteins within or from closely related species. We also identified species-restricted protein interactions, revealing insight into the mechanistic diversity and ongoing molecular innovation in Drosophila piRNA production. In sum, our analyses reveal principles of interaction evolution in an adaptively evolving protein-protein interaction network, and support intermolecular interaction innovation as a central molecular mechanism of evolutionary adaptation in protein-coding genes.
尽管对于生育至关重要,但基因组防御途径基因通常进化迅速。然而,对于这种适应性的分子基础却知之甚少。在这里,我们以前所未有的规模和进化分辨率,对果蝇中PIWI相互作用小RNA(piRNA)基因组防御途径内的蛋白质相互作用网络的进化进行了表征。我们发现了以异染色质蛋白1(HP1)旁系同源物Rhino为锚定的蛋白质相互作用网络普遍存在的快速进化。通过跨物种高通量酵母双杂交筛选,我们在果蝇约4000万年的进化过程中确定了三种不同的进化蛋白质相互作用轨迹。虽然一些蛋白质相互作用是完全保守的,这表明尽管氨基酸序列快速变化但功能仍保持保守,但其他相互作用是通过共同进化得以保留的,并且仅在密切相关物种内或来自密切相关物种的蛋白质之间被检测到。我们还确定了物种特异性的蛋白质相互作用,揭示了对果蝇piRNA产生过程中机制多样性和正在进行的分子创新的见解。总之,我们的分析揭示了适应性进化的蛋白质 - 蛋白质相互作用网络中相互作用进化的原理,并支持分子间相互作用创新作为蛋白质编码基因进化适应的核心分子机制。