Suppr超能文献

基于多种机器学习算法和嗓音情感特征的阈下抑郁症识别模型构建

[Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics].

作者信息

Chen Meimei, Wang Yang, Lei Huangwei, Zhang Fei, Huang Ruina, Yang Zhaoyang

机构信息

College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.

Fujian Key Laboratory of Health Status Identification of Traditional Chinese Medicine, Fuzhou 350122, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2025 Apr 20;45(4):711-717. doi: 10.12122/j.issn.1673-4254.2025.04.05.

Abstract

OBJECTIVES

To construct vocal recognition classification models using 6 machine learning algorithms and vocal emotional characteristics of individuals with subthreshold depression to facilitate early identification of subthreshold depression.

METHODS

We collected voice data from both normal individuals and participants with subthreshold depression by asking them to read specifically chosen words and texts. From each voice sample, 384-dimensional vocal emotional feature variables were extracted, including energy feature, Meir frequency cepstrum coefficient, zero cross rate feature, sound probability feature, fundamental frequency feature, difference feature. The Recursive Feature Elimination (RFE) method was employed to select voice feature variables. Classification models were then built using the machine learning algorithms Adaptive Boosting (AdaBoost), Random Forest (RF), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Lasso Regression (LRLasso), and Support Vector Machine (SVM), and the performance of these models was evaluated. To assess generalization capability of the models, we used real-world speech data to evaluate the best speech recognition classification model.

RESULTS

The AdaBoost, RF, and LDA models achieved high prediction accuracies of 100%, 100%, and 93.3% on word-reading speech test set, respectively. In the text-reading speech test set, the accuracies of the AdaBoost, RF, and LDA models were 90%, 80%, and 90%, respectively, while the accuracies of the other 3 models were all below 80%. On real-world word-reading and text-reading speech data, the classification models using AdaBoost and Random Forest still achieved high predictive accuracies (91.7% and 80.6% for AdaBoost and 86.1% and 77.8% for Random, respectively).

CONCLUSIONS

Analyzing vocal emotional characteristics allows effective identification of individuals with subthreshold depression. The AdaBoost and RF models show excellent performance for classifying subthreshold depression individuals, and may thus potentially offer valuable assistance in the clinical and research settings.

摘要

目的

利用6种机器学习算法和阈下抑郁症患者的声音情感特征构建语音识别分类模型,以促进阈下抑郁症的早期识别。

方法

我们通过要求正常人和阈下抑郁症参与者阅读特定选择的单词和文本,收集他们的语音数据。从每个语音样本中提取384维的声音情感特征变量,包括能量特征、梅尔频率倒谱系数、过零率特征、音素概率特征、基频特征、差值特征。采用递归特征消除(RFE)方法选择语音特征变量。然后使用自适应增强(AdaBoost)、随机森林(RF)、线性判别分析(LDA)、逻辑回归(LR)、套索回归(LRLasso)和支持向量机(SVM)等机器学习算法构建分类模型,并评估这些模型的性能。为了评估模型的泛化能力,我们使用实际语音数据来评估最佳语音识别分类模型。

结果

AdaBoost、RF和LDA模型在单词阅读语音测试集上分别达到了100%、100%和93.3%的高预测准确率。在文本阅读语音测试集中,AdaBoost、RF和LDA模型的准确率分别为90%、80%和90%,而其他3个模型的准确率均低于80%。在实际的单词阅读和文本阅读语音数据上,使用AdaBoost和随机森林的分类模型仍具有较高的预测准确率(AdaBoost分别为91.7%和80.6%,随机森林分别为86.1%和77.8%)。

结论

分析声音情感特征能够有效识别阈下抑郁症患者。AdaBoost和RF模型在分类阈下抑郁症患者方面表现出优异性能,因此可能在临床和研究环境中提供有价值的帮助。

相似文献

1
[Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Apr 20;45(4):711-717. doi: 10.12122/j.issn.1673-4254.2025.04.05.
3
Prediction and feature selection of low birth weight using machine learning algorithms.
J Health Popul Nutr. 2024 Oct 12;43(1):157. doi: 10.1186/s41043-024-00647-8.
5
Deep learning and machine learning-based voice analysis for the detection of COVID-19: A proposal and comparison of architectures.
Knowl Based Syst. 2022 Oct 11;253:109539. doi: 10.1016/j.knosys.2022.109539. Epub 2022 Jul 28.
9
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4):345-352. doi: 10.3760/cma.j.cn121430-20230930-00832.
10
COPDVD: Automated classification of chronic obstructive pulmonary disease on a new collected and evaluated voice dataset.
Artif Intell Med. 2024 Oct;156:102953. doi: 10.1016/j.artmed.2024.102953. Epub 2024 Aug 15.

本文引用的文献

1
The voice of depression: speech features as biomarkers for major depressive disorder.
BMC Psychiatry. 2024 Nov 12;24(1):794. doi: 10.1186/s12888-024-06253-6.
2
Enhanced classification and severity prediction of major depressive disorder using acoustic features and machine learning.
Front Psychiatry. 2024 Sep 17;15:1422020. doi: 10.3389/fpsyt.2024.1422020. eCollection 2024.
3
Evaluation metrics and statistical tests for machine learning.
Sci Rep. 2024 Mar 13;14(1):6086. doi: 10.1038/s41598-024-56706-x.
4
Machine learning-based infant crying interpretation.
Front Artif Intell. 2024 Feb 8;7:1337356. doi: 10.3389/frai.2024.1337356. eCollection 2024.
5
Fast and accurate assessment of depression based on voice acoustic features: a cross-sectional and longitudinal study.
Front Psychiatry. 2023 Jun 21;14:1195276. doi: 10.3389/fpsyt.2023.1195276. eCollection 2023.
6
Detecting subtle signs of depression with automated speech analysis in a non-clinical sample.
BMC Psychiatry. 2022 Dec 27;22(1):830. doi: 10.1186/s12888-022-04475-0.
7
Vocal Acoustic Features as Potential Biomarkers for Identifying/Diagnosing Depression: A Cross-Sectional Study.
Front Psychiatry. 2022 Apr 28;13:815678. doi: 10.3389/fpsyt.2022.815678. eCollection 2022.
8
Combining Polygenic Risk Score and Voice Features to Detect Major Depressive Disorders.
Front Genet. 2021 Dec 20;12:761141. doi: 10.3389/fgene.2021.761141. eCollection 2021.
9
Speech as a Biomarker for Depression.
CNS Neurol Disord Drug Targets. 2023;22(2):152-160. doi: 10.2174/1871527320666211213125847.
10
Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis.
Int J Med Inform. 2021 Jul;151:104484. doi: 10.1016/j.ijmedinf.2021.104484. Epub 2021 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验