Suppr超能文献

机器学习辅助的纳米酶传感器阵列用于准确识别和区分健康茶叶中的黄酮类化合物。

Machine learning assisted nanozyme sensor array for accurate identification and discrimination of flavonoids in healthy tea.

作者信息

Ren Zemin, Deng Qingxu, Wang Yu, Yang Yajun, Wang Hongbin, Liu Fufeng, Jing Wenjie

机构信息

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.

出版信息

Food Chem. 2025 Sep 15;486:144612. doi: 10.1016/j.foodchem.2025.144612. Epub 2025 May 2.

Abstract

Identifying flavonoids in herbs is of great significance for elucidating their biological activity and pharmacological effects. However, distinguishing and detecting multiple flavonoids simultaneously remains a challenge. Here, an innovative citric acid-Cu (CA-Cu) nanozyme with peroxidase mimic (POD) and laccase mimic (LAC) activities was successfully synthesized. Due to the varying inhibitory effects of flavonoids on CA-Cu dual-enzyme mimicking activities, and the degree of inhibition increasing with prolonged reaction time, a nanozyme sensor array was constructed based on reaction kinetics and applied to the identification of five flavonoids. This technique further streamlines the building of sensing channels. Moreover, by integrating various machine learning algorithms with the sensor arrays, accurate identification and prediction of five flavonoids in multiple herb samples have been successfully achieved. Finally, the sensor array successfully achieved the differentiation and recognition of multiple healthy tea, demonstrating its feasibility in efficiently distinguishing and detecting flavonoids in complex samples.

摘要

鉴定草药中的黄酮类化合物对于阐明其生物活性和药理作用具有重要意义。然而,同时区分和检测多种黄酮类化合物仍然是一项挑战。在此,成功合成了一种具有过氧化物酶模拟(POD)和漆酶模拟(LAC)活性的创新型柠檬酸-铜(CA-Cu)纳米酶。由于黄酮类化合物对CA-Cu双酶模拟活性的抑制作用不同,且抑制程度随反应时间延长而增加,基于反应动力学构建了纳米酶传感器阵列,并将其应用于五种黄酮类化合物的鉴定。该技术进一步简化了传感通道的构建。此外,通过将各种机器学习算法与传感器阵列相结合,成功实现了对多种草药样品中五种黄酮类化合物的准确识别和预测。最后,该传感器阵列成功实现了多种健康茶的区分和识别,证明了其在高效区分和检测复杂样品中黄酮类化合物方面的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验