Suppr超能文献

基于多轴变压器的U-Net与类平衡集成模型用于使用X射线图像的肺部疾病分类

Multi-axis transformer based U-Net with class balanced ensemble model for lung disease classification using X-ray images.

作者信息

Maruthai Suresh, Thanarajan Tamilvizhi, Ramesh T, Rajendran Surendran

机构信息

Department of Electronics and Communication Engineering, St Joseph's College of Engineering, Chennai, India.

Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, India.

出版信息

J Xray Sci Technol. 2025 May;33(3):540-552. doi: 10.1177/08953996251317416. Epub 2025 Feb 26.

Abstract

Chest X-rays are an essential diagnostic tool for identifying chest disorders because of its high sensitivity in detecting pathological anomalies in the lungs. Classification models based on conventional Convolutional Neural Networks (CNNs) are adversely affected due to their localization bias. In this paper, a new Multi-Axis Transformer based U-Net with Class Balanced Ensemble (MaxTU-CBE) is proposed to improve multi-label classification performance. This may be the first attempt to simultaneously integrate the benefits of hierarchical Multi-Axis Transformer into the encoder and decoder of the traditional U-shaped structure for improving the semantic segmentation superiority of lung image. A key element of MaxTU-CBE is the Contextual Fusion Engine (CFE), which uses the self-attention mechanism to efficiently create global interdependence between features of various scales. Also, deep CNN incorporate ensemble learning to address the issue of class unbalanced learning. According to experimental findings, our suggested MaxTU-CBE outperforms the competing BiDLSTM classifier by 1.42% and CBIR-CSNN techniques by 5.2% in multi-label classification performance.

摘要

胸部X光因其在检测肺部病理异常方面的高灵敏度,是识别胸部疾病的重要诊断工具。基于传统卷积神经网络(CNN)的分类模型由于其定位偏差而受到不利影响。本文提出了一种新的基于多轴变压器的类平衡集成U-Net(MaxTU-CBE),以提高多标签分类性能。这可能是首次尝试将分层多轴变压器的优势同时集成到传统U形结构的编码器和解码器中,以提高肺部图像的语义分割优势。MaxTU-CBE的一个关键要素是上下文融合引擎(CFE),它使用自注意力机制有效地在各种尺度的特征之间创建全局相互依赖关系。此外,深度CNN结合集成学习来解决类不平衡学习问题。根据实验结果,我们提出的MaxTU-CBE在多标签分类性能方面比竞争的BiDLSTM分类器高出1.42%,比CBIR-CSNN技术高出5.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验