Suppr超能文献

一项关于使用胸部X光成像的人工智能软件进行结核病诊断的系统评价和荟萃分析。

A systematic review and meta-analysis of artificial intelligence software for tuberculosis diagnosis using chest X-ray imaging.

作者信息

Han Zhi-Lin, Zhang Yu-Yang, Li Jian, Gao Shan, Liu Wei, Yang Wan-Jie, Xing Zhi-Heng

机构信息

Department of Radiology, Haihe Hospital, Tianjin University, Tianjin, China.

Haihe Clinical School, Tianjin Medical University, Tianjin, China.

出版信息

J Thorac Dis. 2025 May 30;17(5):3223-3237. doi: 10.21037/jtd-2025-604. Epub 2025 May 27.

Abstract

BACKGROUND

Pulmonary tuberculosis (PTB) remains a global public health challenge, with 10.8 million new cases reported in 2023. Early diagnosis is crucial for controlling its spread, yet traditional sputum-based tests face limitations in turnaround time and resource availability. Chest X-ray (CXR) is a cost-effective diagnostic tool, but its use in high-tuberculosis (TB) burden regions is restricted by a shortage of radiologists. Artificial intelligence (AI)-based computer-aided detection (CAD) systems, leveraging deep learning, offer a promising solution for automated PTB detection. However, variability in diagnostic performance across AI tools and the need for scenario-specific threshold adjustments remain challenges that need to be addressed. Our meta-analysis evaluated the diagnostic accuracy of five AI-based PTB detection products, aiming to provide insights for advancing AI applications in TB screening and diagnosis.

METHODS

The PubMed, Embase, Web of Science, and Cochrane Library databases were searched for literature related to CXR diagnosis of TB based on AI technology published from the establishment day of the database to December 19, 2024. The keywords were "artificial intelligence", "tuberculosis", "chest X-ray", and "diagnosis". The literature search, screening, data extraction, quality evaluation, and bias risk assessment were conducted independently by two researchers, and Stata 17.0 software (StataCorp) was used to process and analyze the data.

RESULTS

A total of 5,651 references were retrieved, and 21 references were finally selected according to the inclusion and exclusion criteria. The meta-analysis included five software solutions for CXR analysis: JF CXR-1 (JF Healthcare, Nanchang, China), qXR (Qure.ai, Mumbai, India), Lunit INSIGHT CXR (Lunit, Seoul, South Korea), CAD4TB (Delft Imaging, 's-Hertogenbosch, Netherlands), and InferRead DR Chest (Infervision, Beijing, China). Their sensitivity and specificity were as follows: JF CXR-1, 86.0% and 80.0%; qXR, 90.0% and 64.0%; Lunit INSIGHT CXR, 90.0% and 63.0%; CAD4TB, 91.0% and 60.0%; InferRead DR Chest, 89.0% and 59.0%.

CONCLUSIONS

AI software has demonstrated excellent diagnostic performance in assisting the CXR diagnosis of TB and can help clinicians to make rapid and accurate decisions in screening and treating patients with TB.

摘要

背景

肺结核(PTB)仍然是一项全球公共卫生挑战,2023年报告了1080万新病例。早期诊断对于控制其传播至关重要,但传统的痰检在周转时间和资源可用性方面存在局限性。胸部X光(CXR)是一种经济高效的诊断工具,但其在高结核病负担地区的使用受到放射科医生短缺的限制。基于人工智能(AI)的计算机辅助检测(CAD)系统利用深度学习,为肺结核的自动检测提供了一个有前景的解决方案。然而,不同人工智能工具的诊断性能存在差异,以及需要针对具体情况调整阈值,这些仍然是需要解决的挑战。我们的荟萃分析评估了五种基于人工智能的肺结核检测产品的诊断准确性,旨在为推进人工智能在结核病筛查和诊断中的应用提供见解。

方法

在PubMed、Embase、Web of Science和Cochrane图书馆数据库中搜索从数据库建立之日到2024年12月19日发表的与基于人工智能技术的胸部X光诊断结核病相关的文献。关键词为“人工智能”、“结核病”、“胸部X光”和“诊断”。文献检索、筛选、数据提取、质量评估和偏倚风险评估由两名研究人员独立进行,并使用Stata 17.软件(StataCorp)处理和分析数据。

结果

共检索到5651篇参考文献,最终根据纳入和排除标准选择了21篇参考文献。荟萃分析包括用于胸部X光分析的五种软件解决方案:JF CXR-1(中国南昌JF Healthcare)、qXR(印度孟买Qure.ai)、Lunit INSIGHT CXR(韩国首尔Lunit)、CAD4TB(荷兰斯海尔托亨博斯Delft Imaging)和InferRead DR Chest(中国北京Infervision)。它们的敏感性和特异性如下:JF CXR-1为86.0%和80.0%;qXR为9%和64.0%;Lunit INSIGHT CXR为90.0%和63.0%;CAD4TB为91.0%和60.0%;InferRead DR Chest为89.0%和59.0%。

结论

人工智能软件在辅助胸部X光诊断结核病方面表现出优异的诊断性能,可帮助临床医生在筛查和治疗结核病患者时做出快速准确的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3424/12170011/1dfb5f691ad4/jtd-17-05-3223-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验