Suppr超能文献

快速扫描循环伏安法期间碳微电极阻抗的追踪

Tracking Carbon Microelectrode Impedance during Fast-Scan Cyclic Voltammetry.

作者信息

Meunier Carl J, McCarty Gregory S, Sombers Leslie A

机构信息

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.

Department of Cellular and Systems Pharmacology, University of Florida, Gainesville, Florida 32610, United States.

出版信息

ACS Sens. 2025 May 23;10(5):3617-3627. doi: 10.1021/acssensors.5c00401. Epub 2025 May 9.

Abstract

Fast-scan cyclic voltammetry (FSCV) is a powerful technique for monitoring rapid neurochemical fluctuations in living animals. When paired with permanently implanted carbon-fiber microelectrodes, changes in neurochemical dynamics can be monitored over months and related to changes in behavior. However, the performance and electrical properties of handmade microelectrodes are variable and impacted by the biological response to implantation and the physical and chemical diversity of recording environments. These factors collectively impact calibration factors and the shape of the cyclic voltammograms (CVs) that are used for analyte quantification and identification. We previously reported that model RC circuits of variable impedance could be utilized to mimic the observed shifts in FSCV performance that develop . In this work, an electrochemical impedance spectroscopy (EIS) measurement was incorporated within each voltammetric sweep to provide information on rapid changes in impedance, reactance, and capacitance that impact the electrochemical system during the FSCV experiment. The data, which were collected using standard FSCV equipment, quantify large shifts in these parameters upon implantation in tissue. These shifts were largely mitigated by electrochemical conditioning, as reflected in the voltammetric data. This paired FSCV:EIS paradigm can be used to inform users regarding changes in electrochemical performance that occur at any point during an experiment, representing a significant step toward calibration strategies and improved accuracy in data analysis.

摘要

快速扫描循环伏安法(FSCV)是监测活体动物快速神经化学波动的一项强大技术。当与永久植入的碳纤维微电极配合使用时,可以在数月内监测神经化学动力学的变化,并将其与行为变化相关联。然而,手工制作的微电极的性能和电学特性是可变的,会受到植入的生物学反应以及记录环境的物理和化学多样性的影响。这些因素共同影响用于分析物定量和鉴定的校准因子以及循环伏安图(CV)的形状。我们之前报道过,可变阻抗的模型RC电路可用于模拟所观察到的FSCV性能变化。在这项工作中,在每次伏安扫描中加入了电化学阻抗谱(EIS)测量,以提供有关在FSCV实验期间影响电化学系统的阻抗、电抗和电容快速变化的信息。使用标准FSCV设备收集的数据量化了植入组织后这些参数的大幅变化。如伏安数据所示,这些变化在很大程度上通过电化学调节得到缓解。这种配对的FSCV:EIS范式可用于告知用户在实验的任何阶段发生的电化学性能变化,这代表着在改进校准策略和提高数据分析准确性方面迈出了重要一步。

相似文献

1
Tracking Carbon Microelectrode Impedance during Fast-Scan Cyclic Voltammetry.
ACS Sens. 2025 May 23;10(5):3617-3627. doi: 10.1021/acssensors.5c00401. Epub 2025 May 9.
2
Optimized Fabrication of Carbon-Fiber Microbiosensors for Codetection of Glucose and Dopamine in Brain Tissue.
ACS Sens. 2024 May 24;9(5):2662-2672. doi: 10.1021/acssensors.4c00527. Epub 2024 Apr 30.
3
Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
Biomaterials. 2024 Jul;308:122543. doi: 10.1016/j.biomaterials.2024.122543. Epub 2024 Mar 21.
4
Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates.
J Neural Eng. 2024 Jun 27;21(3). doi: 10.1088/1741-2552/ad5703.
5
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
6
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

4
Interpreting Dynamic Interfacial Changes at Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.
Langmuir. 2020 Apr 21;36(15):4214-4223. doi: 10.1021/acs.langmuir.9b03941. Epub 2020 Apr 7.
5
Drift Subtraction for Fast-Scan Cyclic Voltammetry Using Double-Waveform Partial-Least-Squares Regression.
Anal Chem. 2019 Jun 4;91(11):7319-7327. doi: 10.1021/acs.analchem.9b01083. Epub 2019 May 23.
6
Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin.
ACS Chem Neurosci. 2019 Apr 17;10(4):2022-2032. doi: 10.1021/acschemneuro.8b00351. Epub 2019 Jan 12.
7
Carbon-Fiber Microbiosensor for Monitoring Rapid Lactate Fluctuations in Brain Tissue Using Fast-Scan Cyclic Voltammetry.
Anal Chem. 2018 Nov 6;90(21):12994-12999. doi: 10.1021/acs.analchem.8b03694. Epub 2018 Oct 25.
8
Real-Time Detection of Melatonin Using Fast-Scan Cyclic Voltammetry.
Anal Chem. 2018 Jul 17;90(14):8642-8650. doi: 10.1021/acs.analchem.8b01976. Epub 2018 Jul 6.
9
C-FSCV: Compressive Fast-Scan Cyclic Voltammetry for Brain Dopamine Recording.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):51-59. doi: 10.1109/TNSRE.2017.2768500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验