Suppr超能文献

SIM 结合凹槽突变体的相互作用网络揭示了 SUMO 结合的替代模式以及对 SUMO 缀合的深远影响。

Interaction networks of SIM-binding groove mutants reveal alternate modes of SUMO binding and profound impact on SUMO conjugation.

作者信息

Claessens Laura A, Verlaan-de Vries Matty, Broekman Nienke, Luijsterburg Martijn S, Vertegaal Alfred C O

机构信息

Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.

Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.

出版信息

Sci Adv. 2025 May 16;11(20):eadp2643. doi: 10.1126/sciadv.adp2643. Epub 2025 May 14.

Abstract

The best-characterized mode of noncovalent SUMO interaction involves binding of a SUMO-interaction motif (SIM) to a conserved binding groove in SUMO. Our knowledge on other types of SUMO interactions is still limited. Using SIM-binding groove SUMO2/3 mutants and mass spectrometry, we identified proteins that bind to SUMO in an alternate manner. Domain-enrichment analysis characterized a group of WD40 repeat domain-containing proteins as SIM-independent SUMO interactors, and we validated direct binding of SEC13 and SEH1L to SUMO in vitro Using AlphaFold-3 modeling and in vitro mutational analysis, we identified residues in the WD40 domain of SEC13 and SUMO2/3's C terminus involved in the interaction. Furthermore, SIM-binding groove mutants failed to interact with SUMO E3 ligases belonging to the PIAS family, RANBP2, ZNF451, and TOPORS, leading to loss of covalent conjugation to most of SUMO target proteins. Together, our dataset serves as a unique resource and offers valuable insights on the intricacies of the SUMO interactome and SUMO targets.

摘要

最具特征的非共价SUMO相互作用模式涉及SUMO相互作用基序(SIM)与SUMO中保守结合槽的结合。我们对其他类型的SUMO相互作用的了解仍然有限。利用SIM结合槽SUMO2/3突变体和质谱技术,我们鉴定出了以另一种方式与SUMO结合的蛋白质。结构域富集分析将一组含有WD40重复结构域的蛋白质表征为不依赖SIM的SUMO相互作用蛋白,并且我们在体外验证了SEC13和SEH1L与SUMO的直接结合。利用AlphaFold-3建模和体外突变分析,我们确定了SEC13的WD40结构域和SUMO2/3的C末端中参与相互作用的残基。此外,SIM结合槽突变体无法与属于PIAS家族、RANBP2、ZNF451和TOPORS的SUMO E3连接酶相互作用,导致与大多数SUMO靶蛋白的共价结合丧失。总之,我们的数据集是一个独特的资源,为SUMO相互作用组和SUMO靶标的复杂性提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f1/12077520/bef7f6f4af6e/sciadv.adp2643-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验