Suppr超能文献

模拟完整病毒颗粒的挑战以及如何用SIRAH力场解决这些挑战。

Challenges in simulating whole virus particles and how to fix them with the SIRAH force field.

作者信息

Santos Lucianna Helene Silva, Pantano Sergio

机构信息

Institut Pasteur de Montevideo, Montevideo, Uruguay.

Facultad de Química, Universidad de La República, Montevideo, Uruguay.

出版信息

Biophys Rev. 2025 Mar 22;17(2):285-292. doi: 10.1007/s12551-025-01305-x. eCollection 2025 Apr.

Abstract

Current developments in specialized software and computer power make the simulation of large molecular assemblies a technical possibility despite their computational cost. Coarse-grained (CG) approaches simplify molecular complexity and reduce computational costs while preserving intermolecular physical/chemical interactions. These methods enable virus simulations, making them more accessible to research groups with limited supercomputing resources. However, setting up and running molecular dynamics simulations of multimillion systems requires specialized molecular modeling, editing, and visualization skills. Moreover, many issues related to the computational setup, the choice of simulation engines, and the force fields that rule the intermolecular interactions require particular attention and are key to attaining a realistic description of viral systems at the fully atomistic or CG levels. Here, we provide an overview of the current challenges in simulating entire virus particles and the potential of the SIRAH force field to address these challenges through its implementations for CG and multiscale simulations.

摘要

尽管计算成本高昂,但专用软件和计算机能力的当前发展使得对大型分子组装体进行模拟在技术上成为可能。粗粒度(CG)方法简化了分子复杂性并降低了计算成本,同时保留了分子间的物理/化学相互作用。这些方法能够进行病毒模拟,使资源有限的研究团队更容易开展相关研究。然而,对包含数百万个系统的分子动力学模拟进行设置和运行需要专业的分子建模、编辑和可视化技能。此外,许多与计算设置、模拟引擎的选择以及支配分子间相互作用的力场相关的问题需要特别关注,并且是在全原子或CG水平上对病毒系统进行真实描述的关键。在此,我们概述了模拟整个病毒颗粒目前面临的挑战,以及SIRAH力场通过其CG和多尺度模拟实现来应对这些挑战的潜力。

相似文献

1
Challenges in simulating whole virus particles and how to fix them with the SIRAH force field.
Biophys Rev. 2025 Mar 22;17(2):285-292. doi: 10.1007/s12551-025-01305-x. eCollection 2025 Apr.
2
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
3
Self-Set Goals: Autistic Adults Facilitating Their Self-Determination Through Digitally Mediated Social Stories.
Autism Adulthood. 2025 Feb 5;7(1):25-38. doi: 10.1089/aut.2023.0063. eCollection 2025 Feb.
4
The health economics of insulin therapy: How do we address the rising demands, costs, inequalities and barriers to achieving optimal outcomes.
Diabetes Obes Metab. 2025 Jul;27 Suppl 5(Suppl 5):24-35. doi: 10.1111/dom.16488. Epub 2025 Jun 4.
6
"A System That Wasn't Really Optimized for Me": Factors Influencing Autistic University Students' Access to Information.
Autism Adulthood. 2025 Apr 3;7(2):171-184. doi: 10.1089/aut.2023.0139. eCollection 2025 Apr.
7
Autistic Students' Experiences of Employment and Employability Support while Studying at a UK University.
Autism Adulthood. 2025 Apr 3;7(2):212-222. doi: 10.1089/aut.2024.0112. eCollection 2025 Apr.
8
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.
Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep.
10
"I Don't Understand Their Sense of Belonging": Exploring How Nonbinary Autistic Adults Experience Gender.
Autism Adulthood. 2024 Dec 2;6(4):462-473. doi: 10.1089/aut.2023.0071. eCollection 2024 Dec.

本文引用的文献

1
Computational Chemistry in the Global South: A Latin American Perspective.
J Chem Theory Comput. 2025 Feb 25;21(4):1507-1508. doi: 10.1021/acs.jctc.5c00120.
2
Computational Chemistry in the Global South: A Latin American Perspective.
J Chem Inf Model. 2025 Feb 24;65(4):1677-1678. doi: 10.1021/acs.jcim.5c00148.
3
The stability of PCV2 virus-like particles from mammalian cells and challenges for biotechnological applications.
Vaccine. 2025 Jan 12;44:126549. doi: 10.1016/j.vaccine.2024.126549. Epub 2024 Dec 2.
4
Viral entry mechanisms: the role of molecular simulation in unlocking a key step in viral infections.
FEBS Open Bio. 2025 Feb;15(2):269-284. doi: 10.1002/2211-5463.13908. Epub 2024 Oct 14.
5
Coarse-Grained Simulations of Adeno-Associated Virus and Its Receptor Reveal Influences on Membrane Lipid Organization and Curvature.
J Phys Chem B. 2024 Oct 17;128(41):10139-10153. doi: 10.1021/acs.jpcb.4c03087. Epub 2024 Oct 2.
6
Pouring SIRAH on NAMD.
J Phys Chem B. 2024 Dec 5;128(48):11971-11980. doi: 10.1021/acs.jpcb.4c03278. Epub 2024 Sep 25.
7
Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024 Jun;630(8016):493-500. doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
9
The Role of Force Fields and Water Models in Protein Folding and Unfolding Dynamics.
J Chem Theory Comput. 2024 Mar 12;20(5):2321-2333. doi: 10.1021/acs.jctc.3c01106. Epub 2024 Feb 19.
10
SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation.
J Chem Theory Comput. 2024 Jan 23;20(2):963-976. doi: 10.1021/acs.jctc.3c00783. Epub 2024 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验