Rahman Sabnam Sahin, Bhattacharjee Shreya, Motwani Simran, Prakash Govind, Ujjainiya Rajat, Chitkara Shivani, Nair Tripti, Keerthana Rachamadugu Sai, Sengupta Shantanu, Mukhopadhyay Arnab
Molecular Aging Laboratory, BRIC-National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
Nat Commun. 2025 Jun 2;16(1):5118. doi: 10.1038/s41467-025-60475-0.
The folate and methionine cycles (Met-C) are regulated by vitamin B12 (B12), obtained exclusively from diet and microbiota. Met-C supports amino acid, nucleotide, and lipid biosynthesis and provides one-carbon moieties for methylation reactions. While B12 deficiency and polymorphisms in Met-C genes are clinically attributed to neurological and metabolic disorders, less is known about their cell-non-autonomous regulation of systemic physiological processes. Using a B12-sensitive Caenorhabditis elegans mutant, we show that the neuronal Met-C responds to differential B12 content in diet to regulate p38-MAPK activation in the intestine, thereby modulating cytoprotective gene expression, osmotic stress tolerance, behaviour and longevity. Mechanistically, our data suggest that B12-driven changes in the metabolic flux through the Met-C in the mutant's serotonergic neurons increase serotonin biosynthesis. Serotonin activates its receptor, MOD-1, in the post-synaptic interneurons, which then secretes the neuropeptide FLR-2. FLR-2 binding to its intestinal receptor, FSHR-1, induces the phase transition of the SARM domain protein TIR-1, thereby activating the p38-MAPK pathway. Together, we reveal a dynamic neuron-gut signalling axis that helps an organism modulate life history traits based on the status of neuronal Met-C, determined by B12 availability in its diet.
叶酸和甲硫氨酸循环(Met-C)由维生素B12(B12)调节,B12仅从饮食和微生物群中获取。Met-C支持氨基酸、核苷酸和脂质的生物合成,并为甲基化反应提供一碳基团。虽然B12缺乏和Met-C基因多态性在临床上与神经和代谢紊乱有关,但它们对全身生理过程的细胞非自主性调节却知之甚少。利用一种对B12敏感的秀丽隐杆线虫突变体,我们发现神经元Met-C对饮食中不同的B12含量作出反应,以调节肠道中的p38丝裂原活化蛋白激酶(p38-MAPK)激活,从而调节细胞保护基因的表达、渗透胁迫耐受性、行为和寿命。从机制上讲,我们的数据表明,B12驱动的突变体血清素能神经元中通过Met-C的代谢通量变化会增加血清素的生物合成。血清素激活其在突触后中间神经元中的受体MOD-1,然后该神经元分泌神经肽FLR-2。FLR-2与其肠道受体FSHR-1结合,诱导SARM结构域蛋白TIR-1的相变,从而激活p38-MAPK通路。我们共同揭示了一个动态的神经元-肠道信号轴,该轴有助于生物体根据神经元Met-C的状态调节生活史特征,而神经元Met-C的状态由其饮食中B12的可获得性决定。