Moss Fraser J, Zhao Pan, Salameh Ahlam I, Taki Sara, Wass Amanda B, Jacobberger James W, Huffman Dale E, Meyerson Howard J, Occhipinti Rossana, Boron Walter F
Department of Physiology & Biophysics, Case Western Reserve University School of Medicine.
Case Comprehensive Cancer Center, Cleveland, OH 44106, United States.
bioRxiv. 2025 May 18:2025.03.05.639962. doi: 10.1101/2025.03.05.639962.
In this second of three papers, we examine red blood cell (RBC) morphometry and RBC-membrane proteomics from our laboratory mouse strain (C57BL/6). In paper #1, using stopped-flow absorbance spectroscopy to ascertain the rate constant for oxyhemoglobin (HbO) deoxygenation , we find substantial reductions with (1) membrane-protein inhibitors p-chloromercuribenzenesulfonate (pCMBS) or 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS); (2) knockouts of aquaporin-1 (AQP1-KO), or Rhesus blood-group-associated A-glycoprotein (RhAG-KO), or double knockouts (dKO); or (3) inhibitor+dKO. In paper #3, reaction-diffusion mathematical modeling/simulations reveal that could fall secondary to slowed intracellular O/HbO/Hb diffusion. Here in paper #2, blood smears as well as still/video images and imaging flow cytometry (IFC) of living RBCs show that ~97.5% to ~98.6% of control (not drug-treated) cells are biconcave disks (BCDs) across all genotypes. Pretreatment with pCMBS raises non-BCD abundance to ~8.7% for WT and ~5.7% for dKO; for DIDS pretreatment, the figures are ~41% and ~21%, respectively. Modeling (paper #3) accommodates for these shape changes. Light-scattering flow cytometry shows no significant difference in RBC size or shape among genotypes. IFC reveals minor differences among genotypes in RBC major diameter , which (along with mean corpuscular volume, paper #1) yields RBC thickness for simulations in paper #3. Label-free liquid chromatography/tandem mass spectrometry (LC/MS/MS) proteomic analyses of RBC plasma-membrane ghosts confirm the deletion of proteins targeted by our knockouts, and rule out changes in the 100 proteins of greatest inferred abundance. Thus, genetically induced changes in must reflect altered abundance of AQP1 and /or the Rh complex.
在这三篇论文的第二篇中,我们研究了来自我们实验室小鼠品系(C57BL/6)的红细胞(RBC)形态测量学和红细胞膜蛋白质组学。在第一篇论文中,我们使用停流吸收光谱法来确定氧合血红蛋白(HbO)脱氧的速率常数,发现(1)膜蛋白抑制剂对氯汞苯磺酸盐(pCMBS)或4,4'-二异硫氰酸根合芪-2,2'-二磺酸盐(DIDS)、(2)水通道蛋白-1基因敲除小鼠(AQP1-KO)、恒河猴血型相关A糖蛋白基因敲除小鼠(RhAG-KO)或双基因敲除小鼠(dKO),以及(3)抑制剂+dKO均会导致该速率常数大幅降低。在第三篇论文中,反应扩散数学建模/模拟表明,细胞内O/HbO/Hb扩散减慢可能会导致该速率常数下降。在本文(第二篇论文)中,血涂片以及活红细胞的静态/视频图像和成像流式细胞术(IFC)显示,在所有基因型中,约97.5%至约98.6%的对照(未用药物处理)细胞为双凹圆盘状(BCD)。用pCMBS预处理后,野生型(WT)非BCD细胞的丰度提高到约8.7%,dKO提高到约5.7%;用DIDS预处理后,相应数字分别约为41%和21%。建模(第三篇论文)考虑了这些形状变化。光散射流式细胞术显示不同基因型的红细胞大小或形状没有显著差异。IFC揭示了不同基因型在红细胞大直径方面存在微小差异,这与平均红细胞体积(第一篇论文)一起,为第三篇论文中的模拟提供了红细胞厚度数据。对红细胞质膜空泡进行的无标记液相色谱/串联质谱(LC/MS/MS)蛋白质组分析证实了我们基因敲除所针对的蛋白质的缺失,并排除了100种推测丰度最高的蛋白质的变化。因此,基因诱导的该速率常数变化必定反映了水通道蛋白-1和/或Rh复合物丰度的改变。