Suppr超能文献

长期新冠患者的耻辱感经历及获得医疗服务的情况:荷兰多民族人群的定性研究

Experiences of stigma and access to care among long COVID patients: a qualitative study in a multi-ethnic population in the Netherlands.

作者信息

Nyaaba Gertrude Nsorma, Torensma Marieke, Goldschmidt Maria Ingeborg, Nørredam Marie, Moseholm Ellen, Appelman Brent, Rostila Mikael, Tieleman Peter, Biere-Rafi Sara, Prins Maria, Beune Erik, Agyemang Charles

机构信息

Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury, UK

Public and Occupational Health, Amsterdam UMC Location AMC, Amsterdam, The Netherlands.

出版信息

BMJ Open. 2025 Jun 6;15(6):e094487. doi: 10.1136/bmjopen-2024-094487.

Abstract

OBJECTIVE

This study explored the experience of stigma and access to healthcare by persons with long COVID from the majority Dutch and two ethnic minority populations (Turkish and Moroccan) living in the Netherlands.

DESIGN

This was a cross-sectional qualitative study that employed inductive and deductive thematic approaches to data analysis using MAXQDA.

SETTING AND PARTICIPANTS

Between October 2022 and January 2023, 23 semi-structured interviews were conducted with participants of Dutch, Moroccan and Turkish ethnic origins with long COVID living in the Netherlands. Participants were men and women aged 30 years and above.

RESULTS

Guided by the concepts of stigma and candidacy, the findings are structured according to the broader themes of stigma and access to care. The findings show that people with long COVID suffer self and public stigma resulting from the debilitating illness and symptoms. Especially among Turkish and Moroccan ethnic minority participants, strong filial obligations and gendered expectations of responsibility and support within their communities further worsen self-stigma. This experience of stigma persisted within healthcare where lack of information and appropriate care pathways led to feelings of frustration and abandonment, especially for participants with pre-existing health conditions which further complicate candidacy. Under the access to healthcare theme, the findings show multiple challenges in accessing healthcare for long COVID due to several multifaceted factors related to the various stages of candidacy which impacted access to care. Particularly for Turkish and Moroccan ethnic minority participants, additional challenges resulting from limited access to information, pre-existing structural challenges and experience of stereotyping based on ethnicity or assumed migrant identity by health professionals further complicate access to health information and long COVID care.

CONCLUSIONS

The findings call for urgent attention and research to identify and coordinate healthcare for long COVID. There is also a need for accessible, informative and tailored support systems to facilitate patients' access to information and care pathways for long COVID. Providing tailored information and support, addressing the various barriers that hinder optimal operating conditions in healthcare and leveraging on social networks is crucial for addressing stigma and facilitating candidacy for persons with long COVID towards improving access to care.

摘要

目的

本研究探讨了荷兰多数群体以及居住在荷兰的两个少数民族群体(土耳其族和摩洛哥族)中患有长期新冠后遗症的人所经历的污名化情况以及获得医疗保健的情况。

设计

这是一项横断面定性研究,采用归纳和演绎主题分析方法,使用MAXQDA软件进行数据分析。

背景与参与者

2022年10月至2023年1月期间,对居住在荷兰、患有长期新冠后遗症的荷兰族、摩洛哥族和土耳其族参与者进行了23次半结构化访谈。参与者为30岁及以上的男性和女性。

结果

以污名化和就医资格的概念为指导,研究结果按照污名化和获得医疗服务这两个更广泛的主题进行组织。研究结果表明,患有长期新冠后遗症的人因这种使人衰弱的疾病和症状而遭受自我污名化和公众污名化。特别是在土耳其族和摩洛哥族少数民族参与者中,他们在社区内强烈的孝道义务以及对责任和支持的性别期望进一步加剧了自我污名化。这种污名化经历在医疗保健环境中持续存在,因为信息缺乏和适当的就医途径导致了沮丧和被遗弃的感觉,特别是对于那些已有健康问题的参与者来说,这进一步使他们获得医疗服务的资格变得复杂。在获得医疗保健这一主题下,研究结果表明,由于与就医资格各个阶段相关的几个多方面因素影响了获得医疗服务的机会,患有长期新冠后遗症的人在获得医疗保健方面面临多重挑战。特别是对于土耳其族和摩洛哥族少数民族参与者来说,由于获取信息有限、先前存在的结构性挑战以及医疗专业人员基于种族或假定的移民身份进行刻板印象的经历,使得获取健康信息和长期新冠后遗症护理变得更加复杂。

结论

研究结果呼吁紧急关注并开展研究,以确定和协调针对长期新冠后遗症的医疗保健服务。还需要有易于获取、信息丰富且量身定制的支持系统,以促进患者获取有关长期新冠后遗症的信息和就医途径。提供量身定制的信息和支持、解决阻碍医疗保健最佳运行条件的各种障碍以及利用社交网络对于消除污名化和促进患有长期新冠后遗症的人的就医资格以改善获得医疗服务的机会至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验