Suppr超能文献

利用体外研究以及基于生理学的药代动力学建模与模拟来预测通过抑制尿苷二磷酸葡萄糖醛酸转移酶介导的体内大麻素-药物相互作用。

Predicting in vivo cannabinoid-drug interactions mediated via inhibition of UDP-glucuronosyltransferases using in vitro studies and physiologically based pharmacokinetic modeling and simulations.

作者信息

Bansal Sumit, Paine Mary F, Unadkat Jashvant D

机构信息

Department of Pharmaceutics, University of Washington, Seattle, Washington.

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; Center of Excellence for Natural Product Drug Interaction Research, Washington State University, Spokane, Washington.

出版信息

Drug Metab Dispos. 2025 Jun;53(6):100096. doi: 10.1016/j.dmd.2025.100096. Epub 2025 May 12.

Abstract

We previously reported the inhibitory potential of the most extensively studied cannabinoids, cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), along with their respective circulating metabolites, against a panel of cytochrome P450 (CYP) enzymes. In the current work, we characterized the inhibitory potential of these cannabinoids against a panel of recombinant human UDP-glucuronosyltransferases (UGTs). Upon screening CBD, THC, and their primary circulating metabolites (7-hydroxy CBD or 11-hydroxy THC) at 10 μM, cannabinoids likely to inhibit UGTs at pharmacologically relevant concentrations in vivo were characterized further. The unbound IC (IC) for CBD, 7-hydroxy CBD, and THC, respectively, was 0.0015, 1.61, and 0.066 μM (UGT1A9); 0.015, 0.56, and 0.13 μM (UGT2B4); and 0.011, 1.28, and 0.071 μM (UGT2B7). The IC for CBD against UGT1A4, 1A6, 2B10, and 2B15 was 1.22, 0.67, 0.49, and 0.56 μM, respectively. Using various established static models (using C, C, or C), the predicted magnitude of in vivo hepatic interaction (ratio of the area under the plasma concentration vs. time curve [area under the curve] of the object drug in the presence to absence of cannabinoid) between CBD (700 mg bid oral) and a putative object drug that is extensively metabolized (f = 0.75) by UGT1A9, 2B4, and 2B7 ranged from 2.2-3.9, 1.3-3.0, and 1.3-3.2, respectively. The physiologically based pharmacokinetic model predicted increase in the area under the curve of dapagliflozin (UGT1A9 substrate; f = 0.80) and zidovudine (UGT2B7 substrate; f = 0.70) was 126% and 30%, respectively, upon multiple oral dosing of CBD (700 mg bid). In vivo drug interaction studies using UGT1A9, 2B4, and 2B7 probe drugs are necessary to verify our pharmacokinetic CBD-drug interaction predictions. SIGNIFICANCE STATEMENT: This study represents a comprehensive determination of the potency (IC) of cannabidiol, Δ-tetrahydrocannabinol, and their metabolites as inhibitors of recombinant human UDP-glucuronosyltransferases. Among these cannabinoids, cannabidiol was the most potent inhibitor of UGT1A9, 2B4, and 2B7. Using static and physiologically based pharmacokinetic models, we predicted weak to moderate pharmacokinetic interactions between chronic cannabidiol (but not Δ-tetrahydrocannabinol) administration and object drugs predominantly metabolized by UGT1A9, 2B4, or 2B7.

摘要

我们之前报道了研究最为广泛的大麻素——大麻二酚(CBD)和Δ-四氢大麻酚(THC)及其各自的循环代谢物对一组细胞色素P450(CYP)酶的抑制潜力。在当前研究中,我们对这些大麻素对一组重组人尿苷二磷酸葡萄糖醛酸转移酶(UGTs)的抑制潜力进行了表征。在10 μM浓度下筛选CBD、THC及其主要循环代谢物(7-羟基CBD或11-羟基THC)后,对可能在体内药理相关浓度下抑制UGTs的大麻素进行了进一步表征。CBD、7-羟基CBD和THC的游离IC(IC)分别为0.0015、1.61和0.066 μM(UGT1A9);0.015、0.56和0.13 μM(UGT2B4);以及0.011、1.28和0.071 μM(UGT2B7)。CBD对UGT1A4、1A6、2B10和2B15的IC分别为1.22、0.67、0.49和0.56 μM。使用各种既定的静态模型(使用C、C或C),预测CBD(700 mg,每日两次口服)与一种假定的被UGT1A9、2B4和2B7广泛代谢(f = 0.75)的目标药物之间的体内肝脏相互作用程度(存在大麻素与不存在大麻素时目标药物血浆浓度-时间曲线下面积[曲线下面积]的比值)分别为2.2 - 3.9、1.3 - 3.0和1.3 - 3.2。基于生理的药代动力学模型预测,多次口服CBD(700 mg,每日两次)后,达格列净(UGT1A9底物;f = 0.80)和齐多夫定(UGT2B7底物;f = 0.70)的曲线下面积分别增加126%和30%。使用UGT1A9、2B4和2B7探针药物进行体内药物相互作用研究对于验证我们关于CBD与药物药代动力学相互作用的预测是必要的。意义声明:本研究全面测定了大麻二酚、Δ-四氢大麻酚及其代谢物作为重组人尿苷二磷酸葡萄糖醛酸转移酶抑制剂的效力(IC)。在这些大麻素中,大麻二酚是UGT1A9、2B4和2B7最有效的抑制剂。使用静态和基于生理的药代动力学模型,我们预测长期服用大麻二酚(而非Δ-四氢大麻酚)与主要由UGT1A9、2B4或2B7代谢的目标药物之间存在弱至中度的药代动力学相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验