Suppr超能文献

基于果渣的多级多孔碳负极材料用于高性能钠离子电池的研究

Unraveling multi-level porous carbon negative electrode materials based on pomace for high-performance sodium-ion batteries.

作者信息

Lou Fangli, Wang Jinju, Wang Xiang, Zhang Mingxian, Yuan Jie

机构信息

College of Environmental and Chemical Engineering, Dalian University Dalian Liaoning 116622 China.

School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui Guizhou 553004 China

出版信息

RSC Adv. 2025 Jun 20;15(26):20872-20880. doi: 10.1039/d5ra02828k. eCollection 2025 Jun 16.

Abstract

A key hurdle in optimizing sodium-ion battery (SIB) performance is developing cost-effective, highly stable anode materials. Biomass-derived carbon has emerged as a leading candidate due to its recyclability and structural benefits. As a cellulose-rich biomass waste, pomace (RRP) can be transformed into hard carbon materials with porous structures and suitable interlayer spacing through carbonization and structural regulation, exhibiting excellent sodium storage performance. In this study, we developed high-performance hard carbon materials through a straightforward thermal decomposition method, starting with RRP as the primary feedstock. To fine-tune the structure, melamine served as a nitrogen source, effectively weaving nitrogen heteroatoms into the carbon framework. Boasting a sizable interlayer carbon distance (0.69 nm), RRP-800-N exhibits a remarkable reversible capacity (223.7 mAh g at 31 mA g). It also showcases a high initial coulombic efficiency, clocking in at 99.11% at 31 mA g, and demonstrates a stable cycling life, retaining 237.1 mAh g after 100 cycles at 31 mA g. The experimental results indicate that the high-activity N groups and disordered amorphous structure of RRP-800-N offer sufficient active sites and enhance conductivity. In addition, the abundant mesopores provide continuous ion transport pathways, shortening the diffusion distance of Na from the electrolyte to the bulk material. This research shows how RRP biomass waste can be transformed into affordable, sustainable hard carbon, proving its potential as a durable sodium-ion battery anode.

摘要

优化钠离子电池(SIB)性能的一个关键障碍是开发具有成本效益且高度稳定的负极材料。生物质衍生碳因其可回收性和结构优势而成为主要候选材料。作为富含纤维素的生物质废料,果渣(RRP)可通过碳化和结构调控转化为具有多孔结构和合适层间距的硬碳材料,展现出优异的储钠性能。在本研究中,我们以RRP为主要原料,通过简单的热分解方法开发了高性能硬碳材料。为了微调结构,三聚氰胺用作氮源,有效地将氮杂原子编织到碳骨架中。RRP-800-N具有较大的层间碳距离(0.69纳米),在31毫安/克时表现出显著的可逆容量(223.7毫安/克)。它还具有高初始库仑效率,在31毫安/克时达到99.11%,并展示出稳定的循环寿命,在31毫安/克下循环100次后保持237.1毫安/克。实验结果表明,RRP-800-N的高活性N基团和无序的非晶结构提供了足够的活性位点并提高了导电性。此外,丰富的中孔提供了连续的离子传输路径,缩短了Na从电解质到块状材料的扩散距离。这项研究展示了RRP生物质废料如何转化为经济实惠、可持续的硬碳,证明了其作为耐用钠离子电池负极的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验