Suppr超能文献

使用inmoose进行差异表达分析,inmoose是Python中的集成多组学开源环境。

Differential expression analysis with inmoose, the integrated multi-omic open-source environment in Python.

作者信息

Colange Maximilien, Appé Guillaume, Meunier Léa, Weill Solène, Nordor Akpéli, Behdenna Abdelkader

机构信息

Epigene Labs, Paris, France.

出版信息

BMC Bioinformatics. 2025 Jun 23;26(1):160. doi: 10.1186/s12859-025-06180-7.

Abstract

BACKGROUND

Differential gene expression analysis is a prominent technique for the analysis of biomolecular data to identify genetic features associated with phenotypes. Limma-for microarray data -, and edgeR and DESeq2-for RNA-Seq data-, are the most widely used tools for differential gene expression analysis of bulk transcriptomic data.

RESULTS

We present the differential expression features of InMoose, a Python implementation of R tools limma, edgeR, and DESeq2. We experimentally show that InMoose stands as a drop-in replacement for those tools, with nearly identical results. This ensures reproducibility when interfacing both languages in bioinformatic pipelines. InMoose is an open source software released under the GPL3 license, available at www.github.com/epigenelabs/inmoose and https://inmoose.readthedocs.io .

CONCLUSIONS

We present a new Python implementation of state-of-the-art tools limma, edgeR, and DESeq2, to perform differential gene expression analysis of bulk transcriptomic data. This new implementation exhibits results nearly identical to the original tools, improving interoperability and reproducibility between Python and R bioinformatics pipelines.

摘要

背景

差异基因表达分析是一种用于分析生物分子数据以识别与表型相关的遗传特征的重要技术。Limma(用于微阵列数据)以及edgeR和DESeq2(用于RNA测序数据)是用于批量转录组数据差异基因表达分析的最广泛使用的工具。

结果

我们展示了InMoose的差异表达特征,它是R工具limma、edgeR和DESeq2的Python实现。我们通过实验表明,InMoose可作为这些工具的直接替代品,结果几乎相同。这确保了在生物信息学管道中连接两种语言时的可重复性。InMoose是根据GPL3许可发布的开源软件,可在www.github.com/epigenelabs/inmoose和https://inmoose.readthedocs.io获取。

结论

我们提出了一种新的Python实现,用于最先进的工具limma、edgeR和DESeq2,以对批量转录组数据进行差异基因表达分析。这种新实现的结果与原始工具几乎相同,提高了Python和R生物信息学管道之间的互操作性和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa3/12183803/704bc2366c99/12859_2025_6180_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验