Suppr超能文献

同时处理不朽时间偏倚和残余混杂:多发性硬化症研究中采用嵌套病例对照框架的高维倾向评分方法的案例研究。

Simultaneously Dealing With Immortal Time Bias and Residual Confounding: A Case Study of a High-Dimensional Propensity Score Approach With a Nested Case-Control Framework in Multiple Sclerosis Research.

作者信息

Hossain Md Belal, Ng Huah Shin, Zhu Feng, Tremlett Helen, Karim Mohammad Ehsanul

机构信息

School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.

Centre for Advancing Health Outcomes, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Pharmacoepidemiol Drug Saf. 2025 Jul;34(7):e70174. doi: 10.1002/pds.70174.

Abstract

BACKGROUND

Observational studies of time-dependent treatments often face immortal time bias and residual confounding, complicating treatment effect estimation. We implemented a high-dimensional propensity score (hdPS) analysis within a nested case-control (NCC) framework to address both biases simultaneously.

METHODS

We used a retrospective cohort of 19 360 individuals with multiple sclerosis (MS) in British Columbia, Canada, to examine the relationship between disease-modifying drugs (DMDs) and all-cause mortality. A 1:4 NCC analysis addressed immortal time bias, and hdPS was applied to handle residual confounding. Sensitivity analyses tested the robustness of findings across various hdPS parameters and matching strategies.

RESULTS

We matched a total of 3209 cases to 12 293 controls in the NCC analysis, and demonstrated a 28% reduction in mortality risk associated with exposure to DMDs (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.62-0.84) in the NCC-hdPS analysis. Sensitivity analyses using different propensity score estimation techniques and control-matching strategies yielded consistent results, with HRs ranging between 0.70 and 0.77.

CONCLUSIONS

This study offers a practical framework for addressing immortal time bias and residual confounding simultaneously, improving the validity of effect estimates in real-world studies. We shared reproducible R codes for researchers to facilitate the adoption of this methodology in their research.

摘要

背景

对时间依赖性治疗的观察性研究常常面临不朽时间偏倚和残余混杂问题,这使得治疗效果估计变得复杂。我们在巢式病例对照(NCC)框架内实施了高维倾向评分(hdPS)分析,以同时解决这两种偏倚。

方法

我们使用了加拿大不列颠哥伦比亚省19360名多发性硬化症(MS)患者的回顾性队列,来研究疾病修饰药物(DMDs)与全因死亡率之间的关系。1:4的NCC分析解决了不朽时间偏倚问题,并应用hdPS来处理残余混杂。敏感性分析测试了在各种hdPS参数和匹配策略下研究结果的稳健性。

结果

在NCC分析中,我们总共将3209例病例与12293例对照进行了匹配,并在NCC-hdPS分析中证明,接触DMDs可使死亡风险降低28%(风险比[HR]:0.72,95%置信区间[CI]:0.62-0.84)。使用不同倾向评分估计技术和对照匹配策略的敏感性分析得出了一致的结果,HR在0.70至0.77之间。

结论

本研究提供了一个同时解决不朽时间偏倚和残余混杂的实用框架,提高了真实世界研究中效应估计的有效性。我们为研究人员共享了可重复使用的R代码,以促进该方法在他们研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/953d/12186589/4dc555682cc7/PDS-34-e70174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验