Lobo Samuel, Najafi Saeed, Shell M Scott, Shea Joan-Emma
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.
J Phys Chem B. 2025 Jul 10;129(27):6817-6827. doi: 10.1021/acs.jpcb.5c02360. Epub 2025 Jun 26.
Intrinsically disordered proteins (IDPs) lack a stable 3D structure under physiological conditions, making them challenging to study and simulate. In this study, we compare the hydrophobicity and water-protein interactions of amino acids in three popular all-atom molecular dynamics (MD) force fields: amber03ws (a03ws), CHARMM36m (C36m), and a99SB-disp. Using the indirect umbrella sampling (INDUS) technique, we quantify the dewetting free energies of each amino acid in the force fields. Additionally, we analyze water structuring around the amino acids using the water triplet angle distribution and measure water diffusion in the hydration shells. Our results reveal that CHARMM36m has the lowest dewetting free energies, indicating higher amino acid hydrophobicity, while a99SB-disp exhibits the highest, suggesting lower hydrophobicity. Water diffusion is significantly slower in the hydration shells of a99SB-disp due to its unique water structuring (e.g., higher frequency of tetrahedral coordination), while there is much less of a water diffusion slowdown in a03ws and CHARMM36m. We show that these differences impact the behavior of an aggregation-prone tau fragment, jR2R3 P301L, in MD simulations. We find that CHARMM36m's propensity for dimer formation is attributed to its lower dewetting free energies, whereas a99SB-disp's higher-than-expected dimerization propensity is due to favorable, entropically driven changes in water structure upon peptide association. These findings underscore the importance of accurately modeling water-protein interactions for IDPs and protein-protein interactions as well as the sensitivity of these to the underlying force field. Our study suggests that dewetting free energies and water structuring metrics, such as the water triplet angle distribution, can be valuable for future force field development and for predicting phenomena related to water-protein interactions.
内在无序蛋白(IDP)在生理条件下缺乏稳定的三维结构,这使得对其进行研究和模拟具有挑战性。在本研究中,我们比较了三种常用的全原子分子动力学(MD)力场中氨基酸的疏水性和水 - 蛋白相互作用:amber03ws(a03ws)、CHARMM36m(C36m)和a99SB - disp。使用间接伞形采样(INDUS)技术,我们量化了力场中每个氨基酸的去湿自由能。此外,我们使用水三联体角度分布分析氨基酸周围的水结构,并测量水合壳层中的水扩散。我们的结果表明,CHARMM36m具有最低的去湿自由能,表明氨基酸疏水性更高,而a99SB - disp表现出最高的去湿自由能,表明疏水性较低。由于其独特的水结构(例如,四面体配位频率更高),a99SB - disp的水合壳层中的水扩散明显更慢,而a03ws和CHARMM36m中的水扩散减慢则要少得多。我们表明,这些差异会影响易聚集的tau片段jR2R3 P301L在MD模拟中的行为。我们发现,CHARMM36m形成二聚体的倾向归因于其较低的去湿自由能,而a99SB - disp高于预期的二聚化倾向是由于肽缔合时水结构的有利的、熵驱动的变化。这些发现强调了准确模拟IDP的水 - 蛋白相互作用和蛋白 - 蛋白相互作用的重要性,以及这些相互作用对基础力场的敏感性。我们的研究表明,去湿自由能和水结构指标,如水三联体角度分布,对于未来的力场开发和预测与水 - 蛋白相互作用相关的现象可能是有价值的。