Narazaki Genta, Miura Yuki, Pavlov Sergey D, Thete Mayuri Vijay, Roth Julien G, Avar Merve, Shin Sungchul, Kim Ji-Il, Hudacova Zuzana, Heilshorn Sarah C, Pașca Sergiu P
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA, USA.
Nat Biomed Eng. 2025 Jun 27. doi: 10.1038/s41551-025-01427-3.
The generation of neural organoids from human pluripotent stem cells holds great promise in modelling disease and screening drugs, but current approaches are difficult to scale due to undesired organoid fusion. Here we develop a scalable cerebral cortical organoid platform by screening biocompatible polymers that prevent the fusion of organoids cultured in suspension. We identify a cost-effective polysaccharide that increases the viscosity of the culture medium, significantly enhancing the yield of cortical organoids while preserving key features such as regional patterning, neuronal morphology and functional activity. We further demonstrate that this platform enables straightforward screening of 298 FDA-approved drugs and teratogens for growth defects using over 2,400 cortical organoids, uncovering agents that disrupt organoid growth and development. We anticipate this approach to provide a robust and scalable system for modelling human cortical development, and facilitate efficient compound screening for neuropsychiatric disorders-associated phenotypes.
从人类多能干细胞生成神经类器官在疾病建模和药物筛选方面具有巨大潜力,但由于不期望的类器官融合,目前的方法难以规模化。在此,我们通过筛选可防止悬浮培养的类器官融合的生物相容性聚合物,开发了一个可扩展的大脑皮质类器官平台。我们鉴定出一种具有成本效益的多糖,它可增加培养基的粘度,显著提高皮质类器官的产量,同时保留诸如区域模式、神经元形态和功能活性等关键特征。我们进一步证明,该平台能够使用超过2400个皮质类器官直接筛选298种FDA批准的药物和致畸剂以检测生长缺陷,发现破坏类器官生长和发育的药物。我们预计这种方法将为模拟人类皮质发育提供一个强大且可扩展的系统,并促进针对神经精神疾病相关表型的高效化合物筛选。