Nair K Sreekumaran
Mayo Clinic, Rochester, Minnesota, USA.
Diabet Med. 2025 Jul 1:e70086. doi: 10.1111/dme.70086.
Skeletal muscle atrophy was a characteristic of type 1 diabetes (T1DM) prior to insulin discovery and replacement. Indirect calorimetry during the post-absorptive state demonstrated that increased fuel oxidation during transient insulin deprivation in T1DM caused depletion of energy stores. Further, insulin has a critical role in preserving muscle mitochondrial content and function by enhancing mitochondrial biogenesis and proteostasis. Insulin deficiency not only inhibits mitochondrial biogenesis but also accelerates the degradation of mitochondrial proteins, causing a decline in mitochondrial content and efficiency. Inefficient mitochondrial respiration, reflected by the uncoupling of oxidative phosphorylation and consequent decline in ATP production, adversely affects many cellular functions and causes high oxidative stress. Oxidative stress adversely affects cardiovascular functions and damages many skeletal muscle proteins, accelerating their degradation and explaining muscle atrophy. Increased degradation of muscle proteins increases amino acid efflux that stimulates the liver to synthesize many non-insulin-dependent proteins, potentially contributing to macrovascular complications. This phenomenon explains a paradoxical increase in whole-body protein synthesis during insulin deficiency. Further, the mitochondrial biology of brain regions rich in insulin receptors concurrent with accelerated transport of ketones and lactate across the blood-brain barrier during insulin deficiency seems to protect the brain from oxidative stress. In contrast, insulin resistance associated with less ketone and lactate production renders the brain susceptible to protein oxidative damage. Oxidative damage and reduced ATP production potentially explain the higher prevalence of dementia in insulin-resistant people. Enhancement of insulin sensitivity by aerobic exercise and metformin in pre-clinical studies prevents mitochondrial dysfunction and oxidative damage to the brain.
在胰岛素被发现和应用之前,骨骼肌萎缩是1型糖尿病(T1DM)的一个特征。在空腹状态下进行的间接量热法表明,T1DM患者在短暂胰岛素缺乏期间燃料氧化增加导致能量储备耗竭。此外,胰岛素通过增强线粒体生物发生和蛋白质稳态,在维持肌肉线粒体含量和功能方面起着关键作用。胰岛素缺乏不仅抑制线粒体生物发生,还加速线粒体蛋白质的降解,导致线粒体含量和效率下降。氧化磷酸化解偶联以及随之而来的ATP生成减少所反映的线粒体呼吸效率低下,对许多细胞功能产生不利影响,并导致高氧化应激。氧化应激对心血管功能产生不利影响,并损害许多骨骼肌蛋白质,加速其降解,从而导致肌肉萎缩。肌肉蛋白质降解增加会增加氨基酸外流,刺激肝脏合成许多非胰岛素依赖性蛋白质,这可能导致大血管并发症。这种现象解释了胰岛素缺乏期间全身蛋白质合成的反常增加。此外,富含胰岛素受体的脑区的线粒体生物学,以及胰岛素缺乏期间酮体和乳酸跨血脑屏障的加速转运,似乎可以保护大脑免受氧化应激。相比之下,与较少的酮体和乳酸生成相关的胰岛素抵抗使大脑易受蛋白质氧化损伤。氧化损伤和ATP生成减少可能解释了胰岛素抵抗人群中痴呆症患病率较高的原因。在临床前研究中,有氧运动和二甲双胍增强胰岛素敏感性可预防线粒体功能障碍和对大脑的氧化损伤。