Fernández Itziar, Novo-Diez Andrea, González-García María J
Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain.
Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Valladolid, Valladolid, Spain.
Sci Rep. 2025 Jul 2;15(1):22503. doi: 10.1038/s41598-025-06561-1.
This study presents a modular and adaptable approach for the automated extraction of morphological features from meibography images, focusing on Meibomian gland (MG) analysis. The proposed method leverages piecewise linear modeling to derive clinically interpretable metrics that capture key structural characteristics of MGs. The workflow consists of three main stages: (1) semi-automated region of interest (ROI) selection, (2) MG identification and segmentation, and (3) extraction of gland- and image-level metrics. The approach was validated using 616 meibography images from two different imaging systems, demonstrating robustness, adaptability, and high classification accuracy for Meiboscale grading. Key metrics such as the shortening ratio and dropout area proved effective in distinguishing different stages of Meibomian gland dysfunction (MGD). By balancing automation, interpretability, and computational efficiency, this method provides a practical and scalable tool for the objective assessment of MG morphology, with potential applications in clinical practice and large-scale ophthalmic research.
本研究提出了一种模块化且可适应的方法,用于从睑板腺造影图像中自动提取形态特征,重点是睑板腺(MG)分析。所提出的方法利用分段线性建模来得出可在临床上解释的指标,这些指标可捕捉睑板腺的关键结构特征。该工作流程包括三个主要阶段:(1)半自动感兴趣区域(ROI)选择,(2)睑板腺识别与分割,以及(3)腺体和图像级指标的提取。该方法使用来自两个不同成像系统的616张睑板腺造影图像进行了验证,证明了其对于睑板分级的稳健性、适应性和高分类准确性。诸如缩短率和缺失面积等关键指标在区分睑板腺功能障碍(MGD)的不同阶段方面被证明是有效的。通过平衡自动化、可解释性和计算效率,该方法为睑板腺形态的客观评估提供了一种实用且可扩展的工具,在临床实践和大规模眼科研究中具有潜在应用。