Suppr超能文献

与护理专业学生支持在医疗服务中实施环境措施以减少碳足迹相关的因素:一项多地点横断面相关性研究。

Factors associated with nursing students' support for the implementation of environmental measures in healthcare services to reduce carbon footprint: a multisite cross-sectional correlation study.

作者信息

Xu Jiayi, Wu Yibo, Wu Yifan, Miao Juanxia, Zhao Jiukai, Du Kunshuo, Yang Yu, Zang Shuang

机构信息

School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.

School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China.

出版信息

BMC Nurs. 2025 Jul 1;24(1):729. doi: 10.1186/s12912-025-03349-6.

Abstract

BACKGROUND

Reducing the carbon footprint in healthcare services is essential for combating climate change and promoting sustainable health systems. Nursing students play a key role in supporting environmentally friendly practices. This study aimed to assess the level of support among Chinese nursing students and to explore the factors associated with their support.

METHODS

A cross-sectional correlation study was conducted using data from 1871 nursing students who participated in the 2024 Chinese Population Psychology and Behavior Survey (PBICR). Data were collected between June 23 and September 29, 2024, through a nationally representative stratified and quota sampling approach. Based on the social ecological model, this study examined a comprehensive set of factors potentially associated with nursing students' support for the implementation of environmental measures in healthcare services to reduce carbon footprint, including intrapersonal-level variables (e.g., personality traits, self-efficacy, health literacy, etc.), interpersonal-level variables (e.g., perceived social support and family health), institutional-level variables (e.g., academic stage), community-level variables (e.g., place of residence, hukou status, per capita family monthly income), and policy-level variables (e.g., medical insurance). Univariate generalized linear modeling and multivariable stepwise regression were employed to identify significant factors of support for environmental measures in healthcare services.

RESULTS

The average score for supporting the implementation of environmental measures in healthcare services to reduce carbon footprint was 70.93 ± 23.51, indicating an above-moderate level of support among 1871 Chinese nursing students. Significant predictors of nursing students' support level included gender (β = 0.09), extraversion (β = - 0.17), agreeableness (β = 0.11), internal health belief (β = 0.10), meaning in life (β = 0.07), quality of life (β = 0.14), digital health use (β = - 0.09), familiarity with the Sustainable Development Goals (β = 0.31), family health (β = 0.08), and academic stage (β = 0.11) (all P ≤ 0.002). Notably, familiarity with the Sustainable Development Goals emerged as the strongest positive predictor. The model explained 23.3% of the variance (adjusted R² = 0.233, F = 57.66, P < 0.001).

CONCLUSIONS

Support level among Chinese nursing students was above moderate but needs improvement. The findings provide a basis for developing targeted educational strategies to enhance environmental engagement in nursing.

CLINICAL TRAIL NUMBER

Not applicable.

摘要

背景

减少医疗服务中的碳足迹对于应对气候变化和促进可持续卫生系统至关重要。护理专业学生在支持环保实践方面发挥着关键作用。本研究旨在评估中国护理专业学生的支持程度,并探讨与其支持相关的因素。

方法

采用横断面相关性研究,数据来自参与2024年中国人口心理与行为调查(PBICR)的1871名护理专业学生。数据于2024年6月23日至9月29日通过全国代表性的分层配额抽样方法收集。基于社会生态模型,本研究考察了一系列可能与护理专业学生支持在医疗服务中实施环境措施以减少碳足迹相关的因素,包括个人层面变量(如人格特质、自我效能感、健康素养等)、人际层面变量(如感知到的社会支持和家庭健康状况)、机构层面变量(如学业阶段)、社区层面变量(如居住地、户口状况、家庭人均月收入)以及政策层面变量(如医疗保险)。采用单变量广义线性模型和多变量逐步回归来确定支持医疗服务环境措施的显著因素。

结果

支持在医疗服务中实施环境措施以减少碳足迹的平均得分为70.93±23.51,表明1871名中国护理专业学生的支持程度高于中等水平。护理专业学生支持水平的显著预测因素包括性别(β = 0.09)、外向性(β = -0.17)、宜人性(β = 0.11)、内在健康信念(β = 0.10)、生活意义(β = 0.07)、生活质量(β = 0.14)、数字健康使用(β = -0.09)、对可持续发展目标的熟悉程度(β = 0.31)、家庭健康状况(β = 0.08)和学业阶段(β = 0.11)(所有P≤0.002)。值得注意的是,对可持续发展目标的熟悉程度是最强的正向预测因素。该模型解释了23.3%的方差(调整后R² = 0.233,F = 57.66,P < 0.001)。

结论

中国护理专业学生的支持程度高于中等水平,但仍需改进。研究结果为制定有针对性的教育策略以增强护理专业学生的环境参与度提供了依据。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4663/12210754/3bcf818d7917/12912_2025_3349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验