Suppr超能文献

结直肠癌中与淋巴结转移相关的肠道微生物群的识别及预测性机器学习模型构建

Identification and predictive machine learning models construction of gut microbiota associated with lymph node metastasis in colorectal cancer.

作者信息

Wu Yongzhi, Deng Chengen, Huang Zigui, Huang Yongqi, Chen Chuanbin, Qin Mingjian, Wang Zhen, He Fuhai, Liu Shenghai, Zhong Rumao, Liu Jun, Long Chenyan, Liu Jungang, Tang Weizhong, Huang Xiaoliang

机构信息

Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.

Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.

出版信息

mSystems. 2025 Jul 8:e0033925. doi: 10.1128/msystems.00339-25.

Abstract

This study focuses on the significant role between gut microbiota and lymph node metastasis (LNM) in colorectal cancer (CRC). By conducting 16S rRNA sequencing on fecal samples from 147 CRC patients and combining it with the linear discriminant analysis effect size algorithm, we successfully identified significant differences in the gut microbiota between patients with LNM and those with no lymph node metastasis (NLNM). Furthermore, using transcriptome data from 23 CRC patients, we constructed an immune cell infiltration matrix to deeply explore the biological functions associated with LNM. Eventually, using the characteristics of the gut microbiota associated with LNM, we developed random forest (RF) and multilayer perceptron (MLP) machine learning models to predict the LNM status of CRC patients. We identified 21 differentially abundant gut microbes between the two groups, among which , significantly enriched in the LNM group, is closely related to the upregulation of neutrophils and chemokine CXCL8 expression, and this bacterial species is also positively correlated with the enhancement of inosine monophosphate metabolism. The RF and MLP models constructed based on the LNM-associated gut microbiota showed good predictive efficacy in predicting LNM status in CRC. This study reveals that may play an important role in the progression of CRC, with its mechanism potentially involving changes in immune modulation and metabolic pathways. The classification model constructed based on gut microbiota characteristics can predict LNM status of CRC, providing a new perspective for personalized and precision treatment of CRC patients.IMPORTANCEThis study highlights the pivotal role of gut microbiota in lymph node metastasis (LNM) of colorectal cancer (CRC), identifying key microbial differences between LNM and NLNM groups. Our findings implicate in CRC progression via immune modulation and metabolic alterations. Moreover, machine learning models based on gut microbiota predict LNM status accurately, offering a novel approach for personalized CRC treatment.

摘要

本研究聚焦于肠道微生物群与结直肠癌(CRC)淋巴结转移(LNM)之间的重要作用。通过对147例CRC患者的粪便样本进行16S rRNA测序,并结合线性判别分析效应大小算法,我们成功识别出LNM患者与无淋巴结转移(NLNM)患者之间肠道微生物群的显著差异。此外,利用23例CRC患者的转录组数据,我们构建了免疫细胞浸润矩阵,以深入探索与LNM相关的生物学功能。最终,利用与LNM相关的肠道微生物群特征,我们开发了随机森林(RF)和多层感知器(MLP)机器学习模型,以预测CRC患者的LNM状态。我们在两组之间鉴定出21种差异丰富的肠道微生物,其中在LNM组中显著富集的 与中性粒细胞上调和趋化因子CXCL8表达密切相关,并且该细菌物种也与肌苷单磷酸代谢增强呈正相关。基于与LNM相关的肠道微生物群构建的RF和MLP模型在预测CRC的LNM状态方面显示出良好的预测效果。本研究表明, 可能在CRC进展中发挥重要作用,其机制可能涉及免疫调节和代谢途径的变化。基于肠道微生物群特征构建的分类模型可以预测CRC的LNM状态,为CRC患者的个性化和精准治疗提供了新的视角。重要性本研究强调了肠道微生物群在结直肠癌(CRC)淋巴结转移(LNM)中的关键作用,确定了LNM组和NLNM组之间的关键微生物差异。我们的研究结果表明, 通过免疫调节和代谢改变参与CRC进展。此外,基于肠道微生物群的机器学习模型能够准确预测LNM状态,为CRC个性化治疗提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验