Cong Bojie, Thakur Teena, Uribe Alejandro Huerta, Stamou Evangelia, Gopinath Sindhura, Sansom Owen, Maddocks Oliver, Cagan Ross
School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, UK.
CRUK Scotland Institute, Garscube Estate, Glasgow, Scotland, UK.
Oncogene. 2025 Jul 10. doi: 10.1038/s41388-025-03472-3.
Colorectal cancer (CRC) is the second leading cause of cancer deaths worldwide. One key reason is the lack of durable therapies that target KRAS-dependent disease, which represents approximately 40% of CRC cases. Here, we use liquid chromatography/mass spectrometry (LC/MS) analyses on Drosophila CRC tumour models to identify multiple metabolites in the glucuronidation pathway-a toxin clearance pathway that impacts most drugs-as upregulated in trametinib-resistant RAS/APC/P53 ("RAP") tumours compared to trametinib-sensitive Ras single mutant tumours. Genetic inhibition of different steps along the glucuronidation pathway strongly reversed RAP resistance to trametinib; conversely, elevating glucuronidation pathway activity was sufficient to direct trametinib resistance in Ras animals. Mechanistically, pairing oncogenic RAS with hyperactive WNT activity strongly elevated PI3K/AKT/GLUT signalling, which in turn directed elevated glucose uptake and glucuronidation; our data also implicate the pentose phosphate pathway in this process. We provide evidence that this mechanism of trametinib resistance is conserved in a KRAS/APC/TP53 mouse CRC tumour organoid model. Finally, we identify two clinically accessible approaches to inhibiting drug glucuronidation: (i) blocking an initial HDAC1-mediated deacetylation step of trametinib with the FDA-approved drug vorinostat; (ii) reducing blood glucose by the alpha-glucosidase inhibitor acarbose. Overall, our observations demonstrate a key mechanism by which oncogenic RAS/WNT activity promotes increased drug clearance in CRC and provides a practical path towards abrogating drug resistance in CRC tumours.
结直肠癌(CRC)是全球癌症死亡的第二大主要原因。一个关键原因是缺乏针对KRAS依赖性疾病的持久疗法,这种疾病约占CRC病例的40%。在这里,我们对果蝇CRC肿瘤模型进行液相色谱/质谱(LC/MS)分析,以确定葡糖醛酸化途径中的多种代谢物——这是一种影响大多数药物的毒素清除途径——在曲美替尼耐药的RAS/APC/P53(“RAP”)肿瘤中相比于曲美替尼敏感的Ras单突变肿瘤上调。对葡糖醛酸化途径不同步骤的基因抑制强烈逆转了RAP对曲美替尼的耐药性;相反,提高葡糖醛酸化途径活性足以在Ras动物中诱导曲美替尼耐药。从机制上讲,致癌RAS与过度活跃的WNT活性配对会强烈提高PI3K/AKT/GLUT信号传导,进而导致葡萄糖摄取和葡糖醛酸化增加;我们的数据还表明磷酸戊糖途径也参与了这一过程。我们提供的证据表明,这种曲美替尼耐药机制在KRAS/APC/TP53小鼠CRC肿瘤类器官模型中是保守的。最后,我们确定了两种临床上可行的抑制药物葡糖醛酸化的方法:(i)用FDA批准的药物伏立诺他阻断曲美替尼最初由HDAC1介导的去乙酰化步骤;(ii)用α-葡萄糖苷酶抑制剂阿卡波糖降低血糖。总体而言,我们的观察结果证明了致癌RAS/WNT活性促进CRC中药物清除增加的关键机制,并为消除CRC肿瘤中的耐药性提供了一条切实可行的途径。