Campanella Gabriele, Kumar Neeraj, Nanda Swaraj, Singi Siddharth, Fluder Eugene, Kwan Ricky, Muehlstedt Silke, Pfarr Nicole, Schüffler Peter J, Häggström Ida, Neittaanmäki Noora, Akyürek Levent M, Basnet Alina, Jamaspishvili Tamara, Nasr Michel R, Croken Matthew M, Hirsch Fred R, Elkrief Arielle, Yu Helena, Ardon Orly, Goldgof Gregory M, Hameed Meera, Houldsworth Jane, Arcila Maria, Fuchs Thomas J, Vanderbilt Chad
Windreich Department of AI and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Hasso Platner Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Med. 2025 Jul 9. doi: 10.1038/s41591-025-03780-x.
Artificial intelligence models using digital histopathology slides stained with hematoxylin and eosin offer promising, tissue-preserving diagnostic tools for patients with cancer. Despite their advantages, their clinical utility in real-world settings remains unproven. Assessing EGFR mutations in lung adenocarcinoma demands rapid, accurate and cost-effective tests that preserve tissue for genomic sequencing. PCR-based assays provide rapid results but with reduced accuracy compared with next-generation sequencing and require additional tissue. Computational biomarkers leveraging modern foundation models can address these limitations. Here we assembled a large international clinical dataset of digital lung adenocarcinoma slides (N = 8,461) to develop a computational EGFR biomarker. Our model fine-tunes an open-source foundation model, improving task-specific performance with out-of-center generalization and clinical-grade accuracy on primary and metastatic specimens (mean area under the curve: internal 0.847, external 0.870). To evaluate real-world clinical translation, we conducted a prospective silent trial of the biomarker on primary samples, achieving an area under the curve of 0.890. The artificial-intelligence-assisted workflow reduced the number of rapid molecular tests needed by up to 43% while maintaining the current clinical standard performance. Our retrospective and prospective analyses demonstrate the real-world clinical utility of a computational pathology biomarker.
使用苏木精和伊红染色的数字组织病理学切片的人工智能模型为癌症患者提供了有前景的、能保留组织的诊断工具。尽管它们具有优势,但其在实际临床环境中的实用性仍未得到证实。评估肺腺癌中的表皮生长因子受体(EGFR)突变需要快速、准确且经济高效的检测方法,同时要保留组织用于基因组测序。基于聚合酶链反应(PCR)的检测方法能快速得出结果,但与下一代测序相比准确性较低,且需要额外的组织。利用现代基础模型的计算生物标志物可以解决这些局限性。在此,我们收集了一个大型国际数字肺腺癌切片临床数据集(N = 8461),以开发一种计算EGFR生物标志物。我们的模型对一个开源基础模型进行了微调,在原发性和转移性标本上通过离中心泛化和临床级准确性提高了特定任务的性能(曲线下平均面积:内部0.847,外部0.870)。为了评估实际临床转化情况,我们对原发性样本进行了该生物标志物的前瞻性盲法试验,曲线下面积达到了0.890。人工智能辅助工作流程在保持当前临床标准性能的同时,将所需的快速分子检测数量减少了多达43%。我们的回顾性和前瞻性分析证明了计算病理学生物标志物在实际临床中的实用性。