Suppr超能文献

使用真实世界数据集从病理图像预测 EGFR 突变状态。

Predicting EGFR mutational status from pathology images using a real-world dataset.

机构信息

Foundation Medicine Inc., 150 Second Street, Cambridge, MA, USA.

出版信息

Sci Rep. 2023 Mar 16;13(1):4404. doi: 10.1038/s41598-023-31284-6.

Abstract

Treatment of non-small cell lung cancer is increasingly biomarker driven with multiple genomic alterations, including those in the epidermal growth factor receptor (EGFR) gene, that benefit from targeted therapies. We developed a set of algorithms to assess EGFR status and morphology using a real-world advanced lung adenocarcinoma cohort of 2099 patients with hematoxylin and eosin (H&E) images exhibiting high morphological diversity and low tumor content relative to public datasets. The best performing EGFR algorithm was attention-based and achieved an area under the curve (AUC) of 0.870, a negative predictive value (NPV) of 0.954 and a positive predictive value (PPV) of 0.410 in a validation cohort reflecting the 15% prevalence of EGFR mutations in lung adenocarcinoma. The attention model outperformed a heuristic-based model focused exclusively on tumor regions, and we show that although the attention model also extracts signal primarily from tumor morphology, it extracts additional signal from non-tumor tissue regions. Further analysis of high-attention regions by pathologists showed associations of predicted EGFR negativity with solid growth patterns and higher peritumoral immune presence. This algorithm highlights the potential of deep learning tools to provide instantaneous rule-out screening for biomarker alterations and may help prioritize the use of scarce tissue for biomarker testing.

摘要

非小细胞肺癌的治疗越来越依赖于生物标志物,包括表皮生长因子受体 (EGFR) 基因的改变,这些改变受益于靶向治疗。我们开发了一组算法,使用一组 2099 名具有苏木精和伊红 (H&E) 图像的真实高级肺腺癌患者队列来评估 EGFR 状态和形态,这些图像相对于公共数据集表现出高度的形态多样性和低肿瘤含量。表现最佳的 EGFR 算法是基于注意力的,在反映肺腺癌中 EGFR 突变 15%发生率的验证队列中,其曲线下面积 (AUC) 为 0.870,阴性预测值 (NPV) 为 0.954,阳性预测值 (PPV) 为 0.410。注意力模型优于仅关注肿瘤区域的启发式模型,我们表明,尽管注意力模型也主要从肿瘤形态中提取信号,但它还从非肿瘤组织区域提取额外的信号。病理学家对高关注度区域的进一步分析表明,预测的 EGFR 阴性与实体生长模式和更高的肿瘤周围免疫存在相关。该算法突出了深度学习工具在提供即时排除生物标志物改变的筛选方面的潜力,并可能有助于优先考虑稀缺组织进行生物标志物检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4abf/10020556/20197c2e2917/41598_2023_31284_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验