Suppr超能文献

细菌中的从头基因诞生与孤儿基因难题

De novo gene birth and the conundrum of ORFan genes in bacteria.

作者信息

Uz-Zaman Md Hassan, Ochman Howard

机构信息

Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA

Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Genome Res. 2025 Aug 1;35(8):1679-1688. doi: 10.1101/gr.280157.124.

Abstract

Bacterial genomes are notable in that they contain large numbers of lineage-restricted ("ORFan") genes, which have been postulated to originate from either horizontal transfer, rapid divergence from pre-existing genes, or de novo emergence from noncoding sequences. We assess the body of research that explores each of these hypotheses and demonstrate that the mystery of the origin of bacterial ORFans still remains unresolved. Nonetheless, bacteria offer several unique avenues for research into the process and mechanics of gene birth at a resolution not feasible in other organisms. Both their amenability to experimental evolutionary analysis and their strain-level variation in gene content foster investigations of how noncoding sequences acquire expression and transition into functionality-questions central to the origin of phenotypic novelty.

摘要

细菌基因组的显著特点是它们包含大量谱系受限的(“孤儿”)基因,这些基因被推测起源于水平转移、从现有基因的快速分化,或从非编码序列中从头出现。我们评估了探索这些假设的各项研究,并表明细菌孤儿基因的起源之谜仍未得到解决。尽管如此,细菌为研究基因诞生的过程和机制提供了几条独特的途径,这是在其他生物体中无法实现的分辨率。它们对实验进化分析的适应性以及基因含量的菌株水平差异,都有助于研究非编码序列如何获得表达并转变为功能性——这些问题是表型新奇性起源的核心。

相似文献

1
De novo gene birth and the conundrum of ORFan genes in bacteria.
Genome Res. 2025 Aug 1;35(8):1679-1688. doi: 10.1101/gr.280157.124.
2
The transfer of antibiotic resistance genes between evolutionarily distant bacteria.
mSphere. 2025 Jun 25;10(6):e0011425. doi: 10.1128/msphere.00114-25. Epub 2025 Jun 3.
4
Genomic and phenotypic insights into Serratia interaction with plants from an ecological perspective.
Braz J Microbiol. 2025 Jun;56(2):1219-1239. doi: 10.1007/s42770-025-01652-7. Epub 2025 Mar 25.
6
Effects of parental care on skin microbial community composition in poison frogs.
Elife. 2025 Jul 31;14:RP103331. doi: 10.7554/eLife.103331.
8
From insect endosymbiont to phloem colonizer: comparative genomics unveils the lifestyle transition of phytopathogenic strains.
mSystems. 2025 May 20;10(5):e0149624. doi: 10.1128/msystems.01496-24. Epub 2025 Apr 9.
10
Evolutionary history and association with seaweeds shape the genomes and metabolisms of marine bacteria.
mSphere. 2025 Jun 25;10(6):e0099624. doi: 10.1128/msphere.00996-24. Epub 2025 Jun 2.

本文引用的文献

2
The hidden bacterial microproteome.
Mol Cell. 2025 Mar 6;85(5):1024-1041.e6. doi: 10.1016/j.molcel.2025.01.025. Epub 2025 Feb 19.
3
Protein structure alignment by Reseek improves sensitivity to remote homologs.
Bioinformatics. 2024 Nov 1;40(11). doi: 10.1093/bioinformatics/btae687.
4
Orphan genes are not a distinct biological entity.
Bioessays. 2025 Jan;47(1):e2400146. doi: 10.1002/bies.202400146. Epub 2024 Nov 3.
5
Ancestral Sequence Reconstruction as a Tool to Detect and Study De Novo Gene Emergence.
Genome Biol Evol. 2024 Aug 5;16(8). doi: 10.1093/gbe/evae151.
7
Promoter recruitment drives the emergence of proto-genes in a long-term evolution experiment with Escherichia coli.
PLoS Biol. 2024 May 7;22(5):e3002418. doi: 10.1371/journal.pbio.3002418. eCollection 2024 May.
8
Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways.
Nat Ecol Evol. 2023 Dec;7(12):2067-2079. doi: 10.1038/s41559-023-02224-4. Epub 2023 Nov 9.
9
Ribosome profiling reveals the fine-tuned response of to mild and severe acid stress.
mSystems. 2023 Dec 21;8(6):e0103723. doi: 10.1128/msystems.01037-23. Epub 2023 Nov 1.
10
Detection of Known and Novel Small Proteins in Using a Combination of Bottom-Up and Digest-Free Proteomics and Proteogenomics.
Anal Chem. 2023 Aug 15;95(32):11892-11900. doi: 10.1021/acs.analchem.3c00676. Epub 2023 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验