Suppr超能文献

Boltz-2:迈向准确高效的结合亲和力预测

Boltz-2: Towards Accurate and Efficient Binding Affinity Prediction.

作者信息

Passaro Saro, Corso Gabriele, Wohlwend Jeremy, Reveiz Mateo, Thaler Stephan, Somnath Vignesh Ram, Getz Noah, Portnoi Tally, Roy Julien, Stark Hannes, Kwabi-Addo David, Beaini Dominique, Jaakkola Tommi, Barzilay Regina

机构信息

MIT CSAIL.

MIT Jameel Clinic.

出版信息

bioRxiv. 2025 Jun 18:2025.06.14.659707. doi: 10.1101/2025.06.14.659707.

Abstract

Accurately modeling biomolecular interactions is a central challenge in modern biology. While recent advances, such as AlphaFold3 and Boltz-1, have substantially improved our ability to predict biomolecular complex structures, these models still fall short in predicting binding affinity, a critical property underlying molecular function and therapeutic efficacy. Here, we present Boltz-2, a new structural biology foundation model that exhibits strong performance for both structure and affinity prediction. Boltz-2 introduces controllability features including experimental method conditioning, distance constraints, and multi-chain template integration for structure prediction, and is, to our knowledge, the first AI model to approach the performance of free-energy perturbation (FEP) methods in estimating small molecule-protein binding affinity. Crucially, it achieves strong correlation with experimental readouts on many benchmarks, while being at least 1000× more computationally efficient than FEP. By coupling Boltz-2 with a generative model for small molecules, we demonstrate an effective workflow to find diverse, synthesizable, high-affinity binders, as estimated by absolute FEP simulations on the TYK2 target. To foster broad adoption and further innovation at the intersection of machine learning and biology, we are releasing Boltz-2 weights, inference, and training code under a permissive open license, providing a robust and extensible foundation for both academic and industrial research.

摘要

准确模拟生物分子相互作用是现代生物学的核心挑战。虽然诸如AlphaFold3和Boltz-1等最新进展显著提高了我们预测生物分子复合物结构的能力,但这些模型在预测结合亲和力方面仍有不足,而结合亲和力是分子功能和治疗效果的关键属性。在此,我们展示了Boltz-2,这是一种新的结构生物学基础模型,在结构和亲和力预测方面均表现出强大性能。Boltz-2引入了可控性特征,包括用于结构预测的实验方法条件设定、距离约束和多链模板整合,据我们所知,它是首个在估计小分子与蛋白质结合亲和力方面接近自由能微扰(FEP)方法性能的人工智能模型。至关重要的是,它在许多基准测试中与实验读数具有很强的相关性,同时计算效率比FEP至少高1000倍。通过将Boltz-2与小分子生成模型相结合,我们展示了一种有效的工作流程,以找到如通过对TYK2靶点进行绝对FEP模拟所估计的多样、可合成的高亲和力结合物。为了促进机器学习与生物学交叉领域的广泛应用和进一步创新,我们正在宽松的开源许可下发布Boltz-2的权重、推理和训练代码,为学术研究和工业研究提供一个强大且可扩展的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef1/12262699/206c62a796a7/nihpp-2025.06.14.659707v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验