Xiao Sian, Alshahrani Mohammed, Hu Guang, Tao Peng, Verkhivker Gennady
Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, USA.
Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California, USA.
Protein Sci. 2025 Aug;34(8):e70228. doi: 10.1002/pro.70228.
Kirsten rat sarcoma viral oncogene homolog (KRAS) is a pivotal oncoprotein that regulates cell proliferation and survival through interactions with downstream effectors such as RAF1. Despite significant advances, the dynamic and energetic mechanisms of KRAS allostery by which oncogenic mutations can modulate KRAS-RAF1 signaling remain poorly understood. In this study, we employ microsecond molecular dynamics simulations, mutational scanning, and binding free energy calculations together with dynamic network modeling to elucidate the effect of KRAS G12V, G13D, and Q61R mutations and characterize the thermodynamic drivers and hotspots of KRAS binding and allostery. We found that these mutations stabilize the active state and enhance RAF1 binding by differentially modulating the flexibility of switch regions. The G12V mutation rigidifies both switch I and switch II, locking KRAS in a stable active state. In contrast, the G13D mutation moderately reduces switch I flexibility, while the Q61R mutation induces a more dynamic conformational landscape. Mutational scanning and binding free energy analysis of KRAS-RAF1 complexes identified key binding affinity hotspots that leverage synergistic electrostatic and hydrophobic binding interactions in stabilizing the KRAS-RAF1 interfaces. Dynamic network analysis identifies critical allosteric centers and a conserved allosteric architecture that mediate long-range interactions in the KRAS-RAF1 complexes and enable precision modulation of KRAS dynamics in oncogenic contexts. The predictions accurately reproduced the experimental data on KRAS allostery and provided a detailed map of allosteric communications mediated by the central β-sheet region of KRAS that connects the binding interface hotspots with allosteric hubs transmitting functional conformational changes. Together, these findings advance our understanding of mechanisms underlying allosteric regulation of KRAS binding and underscore the importance of targeting mutant-specific conformations for therapeutic interventions.
Kirsten大鼠肉瘤病毒癌基因同源物(KRAS)是一种关键的癌蛋白,它通过与RAF1等下游效应器相互作用来调节细胞增殖和存活。尽管取得了重大进展,但致癌突变能够调节KRAS-RAF1信号传导的KRAS变构的动态和能量机制仍知之甚少。在本研究中,我们采用微秒级分子动力学模拟、突变扫描、结合自由能计算以及动态网络建模,以阐明KRAS G12V、G13D和Q61R突变的影响,并表征KRAS结合和变构的热力学驱动因素及热点。我们发现,这些突变通过差异调节开关区域的灵活性来稳定活性状态并增强RAF1结合。G12V突变使开关I和开关II都僵化,将KRAS锁定在稳定的活性状态。相比之下,G13D突变适度降低了开关I的灵活性,而Q61R突变则诱导了更动态的构象格局。对KRAS-RAF1复合物的突变扫描和结合自由能分析确定了关键的结合亲和力热点,这些热点利用协同的静电和疏水结合相互作用来稳定KRAS-RAF1界面。动态网络分析确定了关键的变构中心和保守的变构结构,它们介导KRAS-RAF1复合物中的远程相互作用,并在致癌环境中实现对KRAS动力学的精确调节。这些预测准确地再现了关于KRAS变构的实验数据,并提供了由KRAS的中央β-折叠区域介导的变构通讯的详细图谱,该区域将结合界面热点与传递功能构象变化的变构枢纽连接起来。总之,这些发现推进了我们对KRAS结合变构调节机制的理解,并强调了针对突变特异性构象进行治疗干预的重要性。