Suppr超能文献

磷霉素的亚抑制浓度通过一种α依赖性机制增强生物膜形成。

Sub-inhibitory concentrations of fosfomycin enhance biofilm formation by a -dependent mechanism.

作者信息

Zeng Tingting, Wang Ying, Zhu Qing, Xi Huimin, Liu Mei-Fang, Liu Peng, Bai YunXue, Yuan Lei, Zhao Rui, Sheng Yi-Yun, Dai Qianbin

机构信息

Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China.

出版信息

Microbiol Spectr. 2025 Sep 2;13(9):e0152125. doi: 10.1128/spectrum.01521-25. Epub 2025 Jul 21.

Abstract

readily forms biofilms, which contribute to antimicrobial resistance and the persistence of chronic infections. This study investigates the effects of sub-inhibitory concentrations of fosfomycin on biofilm formation and elucidates the underlying molecular mechanisms. Using crystal violet staining and confocal laser scanning microscopy, we demonstrated that fosfomycin at 1 µg/mL significantly enhanced biofilm biomass by 1.82- to 4.27-fold and led to denser biofilm structures. Adhesion assays further revealed that fosfomycin significantly promoted the initial attachment of to solid surfaces, a critical early step in biofilm development. Phenotypic analyses showed increased production of polysaccharide intercellular adhesin, enhanced bacterial aggregation, and accelerated autolysis, resulting in elevated extracellular DNA release. Enzymatic disruption experiments indicated that, in addition to PIA and eDNA, proteins also play an important role in fosfomycin-enhanced biofilm formation. RT-qPCR revealed significant upregulation of key biofilm-associated genes, including , , , , , , and the global regulator . Notably, deletion of abolished fosfomycin-induced promotion of both adhesion and biofilm formation, while complementation restored the phenotype, confirming a -dependent mechanism underlying the fosfomycin-mediated enhancement of biofilm formation. These findings suggest that sub-inhibitory concentrations of fosfomycin promote biofilm formation via -mediated regulation, involving increased PIA synthesis, eDNA release, and protein-dependent matrix components. This mechanism may contribute to treatment failure and the development of persistent, antibiotic-resistant infections.IMPORTANCEBiofilm formation is a major factor in the persistence and antibiotic resistance of infections. Although fosfomycin is increasingly used to treat multidrug-resistant bacterial infections, its sub-inhibitory effects on biofilm formation have not been fully elucidated. Our study reveals that low-dose fosfomycin can significantly enhance biofilm formation through a -dependent mechanism. This finding raises concerns about the potential risks of sub-optimal dosing and highlights the need for careful evaluation of treatment strategies to avoid promoting persistent infections and resistance.

摘要

容易形成生物膜,这有助于产生抗微生物耐药性和导致慢性感染的持续存在。本研究调查了亚抑菌浓度的磷霉素对生物膜形成的影响,并阐明了其潜在的分子机制。使用结晶紫染色和共聚焦激光扫描显微镜,我们证明1μg/mL的磷霉素可使生物膜生物量显著增加1.82至4.27倍,并导致生物膜结构更致密。黏附试验进一步表明,磷霉素显著促进了其对固体表面的初始黏附,这是生物膜形成的关键早期步骤。表型分析显示细胞间多糖黏附素的产生增加、细菌聚集增强以及自溶加速,导致细胞外DNA释放增加。酶促破坏实验表明,除了PIA和eDNA外,蛋白质在磷霉素增强的生物膜形成中也起重要作用。RT-qPCR显示关键生物膜相关基因,包括 、 、 、 、 、 以及全局调节因子 显著上调。值得注意的是, 的缺失消除了磷霉素诱导的黏附和生物膜形成促进作用,而互补恢复了该表型,证实了磷霉素介导的生物膜形成增强存在依赖 的机制。这些发现表明,亚抑菌浓度的磷霉素通过 介导的调节促进生物膜形成,涉及PIA合成增加、eDNA释放以及蛋白质依赖性基质成分。这种机制可能导致治疗失败以及持续性、抗生素耐药性感染的发展。重要性生物膜形成是感染持续存在和产生抗生素耐药性的主要因素。尽管磷霉素越来越多地用于治疗多重耐药细菌感染,但其对生物膜形成的亚抑菌作用尚未完全阐明。我们的研究表明,低剂量磷霉素可通过依赖 的机制显著增强生物膜形成。这一发现引发了对次优给药潜在风险的担忧,并强调需要仔细评估治疗策略,以避免促进持续性感染和耐药性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验