Suppr超能文献

用学习方法预测交通事故趋势:以土耳其蝙蝠侠市为例

Prediction of traffic accidents trend with learning methods: a case study for Batman, Turkey.

作者信息

Bakiş Enes, Erçetin Mehmet Ali, Acar Emrullah, Gökalp İslam, Yılmaz Musa

机构信息

Research Assistance, Faculty of Engineering, Department of Electrical and Electronics Engineering, Piri Reis University, Tuzla, 34940, Istanbul, Turkey.

Kozluk Vocational School, Department of Construction, Batman University, Kozluk, 72400, Batman, Turkey.

出版信息

Sci Rep. 2025 Jul 22;15(1):26566. doi: 10.1038/s41598-025-11835-9.

Abstract

Assessing the trend of fatalities in recent years and forecasting road accidents enables society to make appropriate planning for prevention and control. This study analyses the road traffic accident data between the years 2013 and 2022 obtained for the province of Batman in Turkey, where it has not been considered before. The scope of the data analysed includes the fatalities and injuries of drivers, passengers and pedestrians. The road accident forecast for the next ten years up to 2032 is the focus of this study and numerous analyses using learning methods such as State Space Models (SSM), Artificial Neural Networks (ANN), Autoregressive Integrated Moving Average (ARIMA) and hybrid models (CNN + LSTM and Attention + GRU) have been performed on the available data. The predictions made with the above models give results with acceptable accuracy. However, they give different results depending on the parameters used. The models created with the data studied show that the number of road accidents and the related deaths and injuries will continue to increase over the next 10 years, starting in 2022. If the causes of road accidents are not eliminated and the situation remains stable as it is in 2022, the number of accidents, deaths and injuries is expected to double by 2032.

摘要

评估近年来的死亡趋势并预测道路交通事故,有助于社会制定适当的预防和控制计划。本研究分析了土耳其巴特曼省2013年至2022年期间的道路交通事故数据,此前该地区尚未进行过此类研究。分析的数据范围包括司机、乘客和行人的伤亡情况。本研究的重点是预测到2032年未来十年的道路事故,并对可用数据进行了大量分析,采用了状态空间模型(SSM)、人工神经网络(ANN)、自回归积分移动平均(ARIMA)等学习方法以及混合模型(CNN+LSTM和Attention+GRU)。使用上述模型进行的预测结果具有可接受的准确性。然而,根据所使用的参数不同,结果也会有所差异。根据所研究的数据创建的模型表明,从2022年开始,未来10年道路事故数量以及相关的死亡和受伤人数将继续增加。如果不消除道路事故的原因,且情况保持2022年的稳定状态,预计到2032年事故、死亡和受伤人数将翻倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da6/12284139/a2ac154a9ce7/41598_2025_11835_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验