Suppr超能文献

为了更安全的高速公路,应用 XGBoost 和 SHAP 进行实时事故检测和特征分析。

Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis.

机构信息

Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 W Taylor St, 2095 ERF, Chicago, IL 60607, United States.

Department of Civil and Materials Engineering, Institute for Environmental Science and Policy, University of Illinois at Chicago, 842 W Taylor St, 2095 ERF, Chicago, IL 60607, United States.

出版信息

Accid Anal Prev. 2020 Mar;136:105405. doi: 10.1016/j.aap.2019.105405. Epub 2019 Dec 20.

Abstract

Detecting traffic accidents as rapidly as possible is essential for traffic safety. In this study, we use eXtreme Gradient Boosting (XGBoost)-a Machine Learning (ML) technique-to detect the occurrence of accidents using a set of real time data comprised of traffic, network, demographic, land use, and weather features. The data used from the Chicago metropolitan expressways was collected between December 2016 and December 2017, and it includes 244 traffic accidents and 6073 non-accident cases. In addition, SHAP (SHapley Additive exPlanation) is employed to interpret the results and analyze the importance of individual features. The results show that XGBoost can detect accidents robustly with an accuracy, detection rate, and a false alarm rate of 99 %, 79 %, and 0.16 %, respectively. Several traffic related features, especially difference of speed between 5 min before and 5 min after an accident, are found to have relatively more impact on the occurrence of accidents. Furthermore, a feature dependency analysis is conducted for three pairs of features. First, average daily traffic and speed after accidents/non-accidents time at the upstream location are interpreted jointly. Then, distance to Central Business District and residential density are analyzed. Finally, speed after accidents/non-accidents time at upstream location and speed after accidents/non-accidents time at downstream location are evaluated with respect to the model's output.

摘要

尽快检测交通事故对于交通安全至关重要。在这项研究中,我们使用极端梯度提升(XGBoost)——一种机器学习(ML)技术,使用一组由交通、网络、人口统计、土地利用和天气特征组成的实时数据来检测事故的发生。从芝加哥都会区高速公路收集的数据使用时间为 2016 年 12 月至 2017 年 12 月,其中包括 244 起交通事故和 6073 起非事故案例。此外,还采用了 SHAP(SHapley Additive exPlanation)来解释结果并分析各个特征的重要性。结果表明,XGBoost 可以稳健地检测事故,准确率、检测率和误报率分别为 99%、79%和 0.16%。一些与交通相关的特征,特别是事故前后 5 分钟的速度差异,被发现对事故发生的影响相对较大。此外,还对三对特征进行了特征依赖分析。首先,解释了上游位置的平均日交通量和事故/非事故时间后的速度之间的联合作用。然后,分析了到中央商务区的距离和居住密度。最后,根据模型输出评估了上游位置的事故/非事故时间后的速度和下游位置的事故/非事故时间后的速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验