Kim Hyeon-Seok, Kim Do-Hyeon, Choi Sun-Yong
Department of Industrial Engineering, Hanyang University, Seoul, Republic of Korea.
Department of Finance and Big Data, Gachon University, Seongnam, Republic of Korea.
PLoS One. 2025 Jul 21;20(7):e0325106. doi: 10.1371/journal.pone.0325106. eCollection 2025.
The Baltic Dry Index (BDI) is a critical benchmark for assessing freight rates and chartering activity in the global shipping market. This study forecasts the BDI using diverse financial data, including commodities, currencies, stock markets, and volatility indices. Unlike previous research, our approach integrates financial indicators specific to major marine trading regions-the U.S., EU, and Hong Kong. We employ advanced machine learning methods, such as Extremely Randomized Trees, Categorical Boosting (CatBoost), and Random Forest, to achieve superior forecasting accuracy. Additionally, we utilize the Shapley Additive Explanations (SHAP) framework to analyze the contributions of financial features to BDI predictions. Key findings reveal that the S&P 500 index is the most influential factor, followed by significant contributions from iron ore and coal commodity indices and the dollar index, underscoring the interplay between the U.S. economy and the BDI. By integrating SHAP explanations, this study not only predicts market trends but also uncovers the economic drivers shaping the BDI. Practically, it supports the stability of the global shipping industry by enabling more informed decision-making for stakeholders. Academically, it introduces overlooked economic factors in BDI prediction, offering valuable insights and directions for future research.
波罗的海干散货运价指数(BDI)是评估全球航运市场运费和租船活动的关键基准。本研究使用包括大宗商品、货币、股票市场和波动率指数在内的多种金融数据对BDI进行预测。与以往研究不同的是,我们的方法整合了主要海洋贸易地区——美国、欧盟和香港特有的金融指标。我们采用先进的机器学习方法,如极度随机树、分类提升(CatBoost)和随机森林,以实现卓越的预测准确性。此外,我们利用夏普利值加法解释(SHAP)框架来分析金融特征对BDI预测的贡献。主要研究结果表明,标准普尔500指数是最具影响力的因素,其次是铁矿石和煤炭大宗商品指数以及美元指数的显著贡献,这凸显了美国经济与BDI之间的相互作用。通过整合SHAP解释,本研究不仅预测了市场趋势,还揭示了影响BDI的经济驱动因素。实际上,它通过为利益相关者提供更明智的决策支持了全球航运业的稳定性。在学术上,它引入了BDI预测中被忽视的经济因素,为未来研究提供了有价值的见解和方向。