Suppr超能文献

现代抗癌研究中用于多靶点药物发现的微扰理论机器学习

Perturbation-Theory Machine Learning for Multi-Target Drug Discovery in Modern Anticancer Research.

作者信息

Kleandrova Valeria V, Cordeiro M Natália D S, Speck-Planche Alejandro

机构信息

LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.

出版信息

Curr Issues Mol Biol. 2025 Apr 25;47(5):301. doi: 10.3390/cimb47050301.

Abstract

Cancers constitute a group of biological complex diseases, which are associated with great prevalence and mortality. These medical conditions are very difficult to tackle due to their multi-factorial nature, which includes their ability to evade the immune system and become resistant to current anticancer agents. There is a pressing need to search for novel anticancer agents with multi-target modes of action and/or multi-cell inhibition versatility, which can translate into more efficacious and safer chemotherapeutic treatments. Computational methods are of paramount importance to accelerate multi-target drug discovery in cancer research but most of them have several disadvantages such as the use of limited structural information through homogeneous datasets of chemicals, the prediction of activity against a single target, and/or lack of interpretability. This mini-review discusses the emergence, development, and application of perturbation-theory machine learning (PTML) as a cutting-edge approach capable of overcoming the aforementioned limitations in the context of multi-target small molecule anticancer discovery. Here, we analyze the most promising investigations on PTML modeling spanning over a decade to enable the discovery of versatile anticancer agents. We highlight the potential of the PTML approach for the modeling of multi-target anticancer activity while envisaging future applications of PTML modeling.

摘要

癌症是一组生物学上复杂的疾病,其发病率和死亡率都很高。由于这些疾病具有多因素性质,包括它们逃避免疫系统和对当前抗癌药物产生耐药性的能力,因此很难应对。迫切需要寻找具有多靶点作用模式和/或多细胞抑制通用性的新型抗癌药物,这可以转化为更有效、更安全的化疗治疗方法。计算方法对于加速癌症研究中的多靶点药物发现至关重要,但其中大多数都有几个缺点,例如通过化学物质的同构数据集使用有限的结构信息、针对单一靶点的活性预测,和/或缺乏可解释性。本综述讨论了微扰理论机器学习(PTML)作为一种前沿方法的出现、发展和应用,该方法能够在多靶点小分子抗癌药物发现的背景下克服上述局限性。在这里,我们分析了过去十多年来对PTML建模最有前景的研究,以发现通用的抗癌药物。我们强调了PTML方法在多靶点抗癌活性建模方面的潜力,同时展望了PTML建模的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fb5/12109642/90dcb8ac799a/cimb-47-00301-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验