Suppr超能文献

由荞麦黄酮介导的土壤微生物遗留物增强了甘蓝对根肿病的抗性。

Soil microbial legacy mediated by buckwheat flavonoids enhances cabbage resistance to clubroot disease.

作者信息

Wu Jiabing, Hu Shilin, Chen Jing, Zhou Lili, Yang Shengdie, Zhou Na, Wu Lei, Niu Guoqing, Zhang Yong, Ren Xuesong, Li Qinfei, Yuan Jun, Song Hongyuan, Si Jun

机构信息

College of Horticulture and Landscape Architecture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, Southwest University, Chongqing, China.

Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China.

出版信息

Microbiome. 2025 Jul 29;13(1):176. doi: 10.1186/s40168-025-02166-y.

Abstract

BACKGROUND

The legacy of plant growth significantly impacts the health of subsequent plants, yet the mechanisms by which soil legacies in crop rotation systems influence disease resistance through rhizosphere plant-microbiome interactions remain unclear. Using a buckwheat-cabbage rotation model, we investigated how microbial soil legacies shape cabbage growth and clubroot disease resistance.

RESULTS

Three-year field trials revealed that buckwheat rotation sustainably reduced clubroot severity by 67%-97%, regardless of pathogen load. Soil sterilization eliminated this suppression, implicating a microbial basis. Using 16S rRNA sequencing, we identified buckwheat-enriched bacterial taxa (Microbacterium, Stenotrophomonas, Ralstonia) that colonized subsequent cabbage roots. Metabolomic profiling pinpointed buckwheat root-secreted flavonoids - 6,7,4'-trihydroxyisoflavone and 7,3',4'-trihydroxyflavone - as key drivers of microbial community restructuring. These flavonoids synergistically enhanced the efficacy of a synthetic microbial community (SynCom1, containing Microbacterium keratanolyticum, Stenotrophomonas maltophilia, and Ralstonia pickettii), boosting disease suppression by 34% in greenhouse trials. Co-application of flavonoids and SynCom1 improved bacterial colonization in root niches. Although SynCom1 partially activated jasmonic acid (JA)-associated defenses, its effectiveness depended primarily on flavonoid-driven microbial recruitment rather than direct immune induction.

CONCLUSIONS

Buckwheat rotation induces flavonoid-mediated soil microbiomes that prime JA-dependent immunity in subsequent cabbage crops, thereby decoupling disease severity from pathogen load. This study elucidates how specialized metabolites orchestrate cross-crop microbial legacies for sustainable disease control, providing a blueprint for designing rotation systems through precision microbiome engineering. Video Abstract.

摘要

背景

前茬作物生长的遗留效应会显著影响后续作物的健康,但轮作系统中的土壤遗留效应通过根际植物-微生物组相互作用影响抗病性的机制仍不清楚。我们利用荞麦-甘蓝轮作模型,研究了微生物土壤遗留效应如何影响甘蓝生长和根肿病抗性。

结果

为期三年的田间试验表明,无论病原菌负荷如何,荞麦轮作均可持续降低根肿病严重程度67%-97%。土壤灭菌消除了这种抑制作用,表明其具有微生物基础。通过16S rRNA测序,我们鉴定出在后续甘蓝根际定殖的、由荞麦富集的细菌类群(微杆菌属、嗜麦芽窄食单胞菌、罗尔斯通氏菌属)。代谢组学分析确定了荞麦根分泌的黄酮类化合物——6,7,4'-三羟基异黄酮和7,3',4'-三羟基黄酮——是微生物群落重组的关键驱动因素。这些黄酮类化合物协同增强了合成微生物群落(SynCom1,包含角质分解微杆菌、嗜麦芽窄食单胞菌和皮氏罗尔斯通氏菌)的功效,在温室试验中病害抑制率提高了34%。黄酮类化合物与SynCom1共同施用可改善细菌在根际生态位的定殖。虽然SynCom1部分激活了与茉莉酸(JA)相关的防御反应,但其有效性主要取决于黄酮类化合物驱动的微生物募集,而非直接的免疫诱导。

结论

荞麦轮作诱导了黄酮类化合物介导的土壤微生物组,从而在后续甘蓝作物中启动了依赖JA的免疫反应,使病害严重程度与病原菌负荷脱钩。本研究阐明了特殊代谢产物如何协调跨作物的微生物遗留效应以实现可持续病害控制,为通过精准微生物组工程设计轮作系统提供了蓝图。视频摘要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验