Bai Yong, Guo Xiangyu, Liu Keyin, Zheng Bingjie, Wei Yilin, Wang Yingyue, Zhang Wenxi, Luo Qiuhong, Yin Jianhua, Wu Liang, Li Yuxiang, Zhang Yong, Chen Ao, Wang Xiangdong, Xu Xun, Liu Chuanyu, Jin Xin
BGI Research, Shenzhen, 518083, China.
State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
Genome Biol. 2025 Jul 29;26(1):230. doi: 10.1186/s13059-025-03697-1.
Spatially resolved transcriptomics (SRT) for characterizing spatial cellular heterogeneities in tissue environments requires systematic analytical approaches to elucidate gene expression variations within their physiological context. Here, we introduce SpaSEG, an unsupervised deep learning model utilizing convolutional neural networks for multiple SRT analysis tasks. Extensive evaluations across diverse SRT datasets generated by various platforms demonstrate SpaSEG's superior robustness and efficiency compared to existing methods. In the application analysis of invasive ductal carcinoma, SpaSEG successfully unravels intratumoral heterogeneity and delivers insights into immunoregulatory mechanisms. These results highlight SpaSEG's substantial potential for exploring tissue architectures and pathological biology.
用于表征组织环境中空间细胞异质性的空间分辨转录组学(SRT)需要系统的分析方法来阐明其生理背景下的基因表达变化。在此,我们介绍SpaSEG,一种利用卷积神经网络进行多种SRT分析任务的无监督深度学习模型。对不同平台生成的各种SRT数据集进行的广泛评估表明,与现有方法相比,SpaSEG具有卓越的稳健性和效率。在浸润性导管癌的应用分析中,SpaSEG成功揭示了肿瘤内异质性,并提供了对免疫调节机制的见解。这些结果突出了SpaSEG在探索组织结构和病理生物学方面的巨大潜力。