Suppr超能文献

在泰勒流微反应器和搅拌釜反应器中比较多金属氧酸盐催化含C5生物质氧化生成甲酸的反应

Comparing the Polyoxometalate-Catalyzed Oxidation of C5-Containing Biomass to Formic Acid in a Taylor-Flow Microreactor and a Stirred-Tank Reactor.

作者信息

Krueger Jan-Dominik H, Popp Lukas, Schörner Markus, Grau Hans Lorenz, Schühle Patrick, Albert Jakob

机构信息

Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany.

Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

出版信息

ACS Sustain Chem Eng. 2025 Jul 24;13(30):11999-12009. doi: 10.1021/acssuschemeng.5c03392. eCollection 2025 Aug 4.

Abstract

Biomass valorization using polyoxometalate-based (POM) catalysts is a promising strategy for green and sustainable chemistry. In the modified OxFA process, various biogenic substrates can be selectively oxidized to the sustainable hydrogen carrier formic acid using the HPVMoO (HPA-5) POM catalyst in an aqueous-methanolic solution with molecular oxygen or compressed air as an oxidant. A current challenge of the mainly used stirred-tank reactors is the mass transfer limitation with respect to the effective dissolution of oxygen in the reaction media. In order to improve gas-liquid mass transfer, alternative reactor concepts are needed. Herein, we demonstrate the selective catalytic oxidation of the C5 model sugar xylose as well as the commercial C5-hydrolysate Renmatix from the Plantrose process to formic acid in a continuous Taylor-flow microreactor, allowing for effective mixing in combination with intrinsic safety and drastically reduced reaction times. This paves the way for a more efficient biomass valorization strategy with respect to industrial implementation.

摘要

使用基于多金属氧酸盐(POM)的催化剂实现生物质增值是绿色和可持续化学的一种有前景的策略。在改进的OxFA工艺中,在水 - 甲醇溶液中,以分子氧或压缩空气作为氧化剂,使用HPVMoO(HPA - 5)POM催化剂可以将各种生物源底物选择性氧化为可持续的氢载体甲酸。目前主要使用的搅拌釜反应器面临的一个挑战是氧气在反应介质中的有效溶解存在传质限制。为了改善气液传质,需要替代的反应器概念。在此,我们展示了在连续泰勒流微反应器中,将C5模型糖木糖以及来自Plantrose工艺的商业C5水解产物Renmatix选择性催化氧化为甲酸,该微反应器能够实现有效混合,兼具本质安全性并大幅缩短反应时间。这为在工业实施方面更高效的生物质增值策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a769/12326389/ea63d63b53b5/sc5c03392_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验