Suppr超能文献

嘌呤短缺应激下肿瘤细胞的适应性与脆弱性

Resilience and vulnerabilities of tumor cells under purine shortage stress.

作者信息

Yu Jianpeng, Jin Chen, Su Cheng, Moon David, Sun Michael, Zhang Hong, Jiang Xue, Zhang Fan, Tserentsoodol Nomi, Bowie Michelle L, Pirozzi Christopher J, George Daniel, Wild Robert, Gao Xia, Ashley David M, He Yiping, Huang Jiaoti

机构信息

Duke University, Durham, United States.

Duke University, United States.

出版信息

Clin Cancer Res. 2025 Aug 11. doi: 10.1158/1078-0432.CCR-25-1667.

Abstract

PURPOSE

Purine metabolism is a promising therapeutic target in cancer; however, how cancer cells respond to purine shortage, particularly their adaptation and vulnerabilities, remains unclear.

EXPERIMENTAL DESIGN

Using the recently developed purine shortage-inducing prodrug DRP-104 and genetic approaches, we investigated the responses in prostate, lung, and glioma cancer models.

RESULTS

We demonstrate that when de novo purine biosynthesis is compromised, cancer cells employ microtubules to assemble purinosomes, multi-protein complexes of de novo purine biosynthesis enzymes that enhance purine biosynthesis efficiency. While this process enables tumor cells to adapt to purine shortage stress, it also renders them more susceptible to the microtubule-stabilizing chemotherapeutic drug Docetaxel. Furthermore, we show that although cancer cells primarily rely on de novo purine biosynthesis, they also exploit Methylthioadenosine Phosphorylase (MTAP)-mediated purine salvage as a crucial alternative source of purine supply, especially under purine shortage stress. In support of this finding, combining DRP-104 with an MTAP inhibitor significantly enhances tumor suppression in prostate cancer (PCa) models in vivo. Finally, despite the resilience of the purine supply machinery, purine shortage-stressed tumor cells exhibit increased DNA damage and activation of the cGAS-STING pathway, which may contribute to impaired immunoevasion and provide a molecular basis of the previously observed DRP-104-induced anti-tumor immunity.

CONCLUSIONS

Together, these findings reveal purinosome assembly and purine salvage as key mechanisms of cancer cell adaptation and resilience to purine shortage while identifying microtubules, MTAP, and immunoevasion deficits as therapeutic vulnerabilities.

摘要

目的

嘌呤代谢是癌症中一个有前景的治疗靶点;然而,癌细胞如何应对嘌呤短缺,尤其是它们的适应性和脆弱性,仍不清楚。

实验设计

使用最近开发的诱导嘌呤短缺的前药DRP-104和基因方法,我们研究了前列腺癌、肺癌和神经胶质瘤癌模型中的反应。

结果

我们证明,当从头嘌呤生物合成受损时,癌细胞利用微管组装嘌呤体,即从头嘌呤生物合成酶的多蛋白复合物,可提高嘌呤生物合成效率。虽然这一过程使肿瘤细胞能够适应嘌呤短缺应激,但也使它们更容易受到微管稳定化疗药物多西他赛的影响。此外,我们表明,尽管癌细胞主要依赖从头嘌呤生物合成,但它们也利用甲硫腺苷磷酸化酶(MTAP)介导的嘌呤补救作为嘌呤供应的关键替代来源,尤其是在嘌呤短缺应激下。为支持这一发现,将DRP-104与MTAP抑制剂联合使用可显著增强体内前列腺癌(PCa)模型中的肿瘤抑制作用。最后,尽管嘌呤供应机制具有弹性,但受到嘌呤短缺应激的肿瘤细胞表现出DNA损伤增加和cGAS-STING途径激活,这可能导致免疫逃逸受损,并为先前观察到的DRP-104诱导的抗肿瘤免疫提供分子基础。

结论

总之,这些发现揭示了嘌呤体组装和嘌呤补救是癌细胞适应和抵抗嘌呤短缺的关键机制,同时确定微管、MTAP和免疫逃逸缺陷为治疗脆弱点。

相似文献

1
Resilience and vulnerabilities of tumor cells under purine shortage stress.
Clin Cancer Res. 2025 Aug 11. doi: 10.1158/1078-0432.CCR-25-1667.
2
Resilience and vulnerabilities of tumor cells under purine shortage stress.
bioRxiv. 2025 Apr 12:2025.03.19.644180. doi: 10.1101/2025.03.19.644180.
4
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
5
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
7
Autistic Students' Experiences of Employment and Employability Support while Studying at a UK University.
Autism Adulthood. 2025 Apr 3;7(2):212-222. doi: 10.1089/aut.2024.0112. eCollection 2025 Apr.
8
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

本文引用的文献

1
Electrochemical response mechanism of DNA damaged cells: DNA damage repair and purine metabolism activation.
Bioelectrochemistry. 2025 Feb;161:108832. doi: 10.1016/j.bioelechem.2024.108832. Epub 2024 Oct 9.
2
Purinosomes spatially co-localize with mitochondrial transporters.
J Biol Chem. 2024 Sep;300(9):107620. doi: 10.1016/j.jbc.2024.107620. Epub 2024 Aug 2.
3
De novo and salvage purine synthesis pathways across tissues and tumors.
Cell. 2024 Jul 11;187(14):3602-3618.e20. doi: 10.1016/j.cell.2024.05.011. Epub 2024 May 31.
4
Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in mutant lung cancer.
Sci Adv. 2024 Mar 29;10(13):eadm9859. doi: 10.1126/sciadv.adm9859. Epub 2024 Mar 27.
7
Mortality Risk for Docetaxel-Treated, High-Grade Prostate Cancer With Low PSA Levels: A Meta-Analysis.
JAMA Netw Open. 2023 Nov 1;6(11):e2340787. doi: 10.1001/jamanetworkopen.2023.40787.
8
Targeting pancreatic cancer metabolic dependencies through glutamine antagonism.
Nat Cancer. 2024 Jan;5(1):85-99. doi: 10.1038/s43018-023-00647-3. Epub 2023 Oct 9.
9
Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance.
Cancer Cell. 2023 Oct 9;41(10):1774-1787.e9. doi: 10.1016/j.ccell.2023.09.005. Epub 2023 Sep 28.
10
nucleotide biosynthetic pathway and cancer.
Genes Dis. 2022 May 16;10(6):2331-2338. doi: 10.1016/j.gendis.2022.04.018. eCollection 2023 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验