Suppr超能文献

一个用于模拟县级新冠病毒传播的框架。

A framework for modeling county-level COVID-19 transmission.

作者信息

Bao Yida, Huang Iris, Li Qi, Zhang Zheng, Xing Yuan, Hou Dongfang, Ye Jiafeng

机构信息

Department of Mathematics, Statistics and Computer Science, University of Wisconsin-Stout, Menomonie, WI, United States.

Inglemoor High School, Kenmore, WA, United States.

出版信息

Front Public Health. 2025 Aug 5;13:1608360. doi: 10.3389/fpubh.2025.1608360. eCollection 2025.

Abstract

This study examines COVID-19 transmission across 3,142 U.S. counties using a truncated dataset from March to September 2020. County-level factors include demographics, socioeconomic status, environmental conditions, and mobility patterns. Ordinary Least Squares regression establishes a baseline for analyzing COVID-19 confirm case counts for each county. We then use Moran's to evaluate spatial clustering, prompting Spatial Autoregressive and Spatial Error Models when autocorrelation is significant. Notably, spatial models outperform the Ordinary Least Squares approach- rises from 0.4849 with Ordinary Least Squares to 0.6846 under Spatial Error Model, while RMSE decreases from 2.0891 to 1.642-demonstrating improved fit and more accurate spatial transmission dynamics. A multilevel framework further explores state-level policy variations. Finally, Geographically Weighted Regression captures spatial non-stationarity by mapping local coefficient differences; we visualized temperature, precipitation, and other key variables-revealing precipitation peaks near 110° W in the Southeast and Northeast and strong sensitivity to temperature. This integrated sequence of methods provides a comprehensive lens for studying epidemiological phenomena. While certain findings align with established research, other variables reveal unexpected patterns. The proposed framework offers a robust template for future investigations where spatial dependence and policy heterogeneity warrant close examination.

摘要

本研究使用2020年3月至9月的截短数据集,考察了美国3142个县的新冠病毒传播情况。县级因素包括人口统计学、社会经济地位、环境条件和流动模式。普通最小二乘法回归为分析每个县的新冠确诊病例数建立了基线。然后,我们使用莫兰指数来评估空间聚类,当自相关显著时,采用空间自回归模型和空间误差模型。值得注意的是,空间模型的表现优于普通最小二乘法——拟合优度从普通最小二乘法的0.4849提高到空间误差模型下的0.6846,而均方根误差从2.0891降至1.642,这表明拟合度提高,空间传播动态更准确。一个多层次框架进一步探讨了州级政策差异。最后,地理加权回归通过绘制局部系数差异来捕捉空间非平稳性;我们将温度、降水和其他关键变量可视化,揭示了东南部和东北部西经110°附近的降水峰值以及对温度的强烈敏感性。这一系列综合方法为研究流行病学现象提供了一个全面的视角。虽然某些发现与已有的研究一致,但其他变量揭示了意想不到的模式。所提出的框架为未来的调查提供了一个强大的模板,在这些调查中,空间依赖性和政策异质性值得密切关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3808/12361220/144e0fe875f2/fpubh-13-1608360-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验