Suppr超能文献

可解释人工智能揭示了非特异性慢性下腰痛阿片类药物处方的组织病理学和社会心理驱动因素。

Explainable AI reveals tissue pathology and psychosocial drivers of opioid prescription for non-specific chronic low back pain.

作者信息

Tong Michelle W, Ziegeler Katharina, Kreutzinger Virginie, Majumdar Sharmila

机构信息

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.

Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA.

出版信息

Sci Rep. 2025 Aug 21;15(1):30690. doi: 10.1038/s41598-025-13619-7.

Abstract

Effective management of non-specific chronic lower back pain (ns-cLBP) requires nuanced prescription decisions within evolving guidelines for conservative treatment. This study developed comprehensive LBP patient profiles from electronic medical records (EMR), integrating clinical charts (demographics, social determinants, diagnoses, medications) and radiology reports (MRI-confirmed diagnoses) to predict pharmacological management strategies. One-vs-one and one-vs-rest classification frameworks systematically evaluated treatment decisions across three prescriptions: no medication, NSAIDs, and opioids. Real-world complexity and heterogeneity in ns-cLBP management was reflected in modest yet clinically meaningful performance metrics (balanced accuracy = 0.58, AUC = 0.62, F1-score = 0.42). Chart-documented diagnoses marginally outperformed MRI-reported pathology as predictors, though this difference was within the range of variability, which suggests the importance of diagnoses informed by patient-reported symptoms in shaping treatment pathways. SHAP feature importance analysis identified consistent predictors (year_at_first_imaging) and variable factors (spinal_stenosis, disc_pathology, race_ethnicity, negative_psych_state, osteoarthritis_osteoarthrosis) in prescriptions, with higher associations observed in those with anxiety or depression, partnered individuals and females. By leveraging explainable AI, this study quantifies the interplay between biological and psychosocial drivers of prescribing decisions, offering a transparent, data-driven monitoring tool for understanding in chronic pain care. These findings demonstrate the potential of multi-modal EMR data and interpretable models to guide more personalized, equitable ns-cLBP management and opioid prescriptions.

摘要

有效管理非特异性慢性下腰痛(ns-cLBP)需要在不断发展的保守治疗指南内做出细致入微的处方决策。本研究从电子病历(EMR)中开发了全面的下腰痛患者档案,整合了临床图表(人口统计学、社会决定因素、诊断、药物)和放射学报告(MRI确诊诊断),以预测药物治疗策略。一对一和一对多分类框架系统地评估了三种处方的治疗决策:不使用药物、非甾体抗炎药(NSAIDs)和阿片类药物。ns-cLBP管理中的现实复杂性和异质性反映在适度但具有临床意义的性能指标上(平衡准确率 = 0.58,AUC = 0.62,F1分数 = 0.42)。图表记录的诊断作为预测指标略优于MRI报告的病理结果,不过这种差异在变异范围内,这表明患者报告症状所提供的诊断对于塑造治疗途径具有重要意义。SHAP特征重要性分析确定了处方中的一致预测因素(首次成像年份)和可变因素(脊柱狭窄、椎间盘病变、种族/族裔、消极心理状态、骨关节炎/骨关节病),在焦虑或抑郁患者、有伴侣者和女性中观察到的关联更高。通过利用可解释的人工智能,本研究量化了处方决策中生物和社会心理驱动因素之间的相互作用,为理解慢性疼痛护理提供了一种透明的、数据驱动的监测工具。这些发现证明了多模式EMR数据和可解释模型在指导更个性化、公平的ns-cLBP管理和阿片类药物处方方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验