Parikh Hirak, Dave Gayatri, Tiwari Archana
Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN, USA.
P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
Arch Microbiol. 2025 Sep 2;207(10):248. doi: 10.1007/s00203-025-04455-4.
Diatoms inhabit a broad pH spectrum, from neutral lakes to highly acidic waters shaped by natural organic acids and anthropogenic inputs such as acid mine drainage (AMD). This review outlines the key chemical drivers of low-pH environments, including natural and industrial acidification. We then synthesize diatom community responses to acid stress-declining taxonomic richness, dominance of acidophilic taxa, and frustule deformities-highlighting how proton toxicity can be a dominant structuring force in highly acidic environments, although in many AMD systems it interacts synergistically with metal stress to shape assemblage composition. At the cellular level, diatoms exhibit adaptive traits including proton-pumping ATPases, dynamic carbon concentrating mechanisms, pH-modifying frustule surface chemistry, and flexible silicon uptake. Genomic studies reveal DNA regulatory elements linked to energy conservation, metabolic rewiring, and enhanced proton/metal homeostasis. Ecologically, acid-tolerant diatoms contribute to carbon, silica, and trace metal cycling, support unique trophic webs, and serve as reliable indicators in biomonitoring and palaeoecological reconstructions. Despite limited experimental data, acidophilic diatoms offer promise for biotechnological applications, including biomimetic nanomaterials, lipid-rich biofuels in acidic photobioreactors, and biofilm-based remediation. We identify key research gaps in genomic resources, taxonomic resolution, and cultivation methods, and propose a multidisciplinary agenda integrating omics, eDNA, and engineered bioreactors. This synthesis underscores the ecological and biotechnological value of acid-tolerant diatoms in understanding and addressing aquatic acidification.
硅藻栖息于广泛的pH值范围,从呈中性的湖泊到由天然有机酸以及诸如酸性矿山排水(AMD)等人为输入形成的高酸性水域。本综述概述了低pH环境的关键化学驱动因素,包括自然酸化和工业酸化。然后,我们综合了硅藻群落对酸胁迫的响应——分类丰富度下降、嗜酸类群占主导地位以及硅藻壳变形——强调了质子毒性如何能够成为高酸性环境中的主要构建力量,尽管在许多AMD系统中它与金属胁迫协同作用以塑造群落组成。在细胞水平上,硅藻表现出适应性特征,包括质子泵ATP酶、动态碳浓缩机制、调节pH值的硅藻壳表面化学以及灵活的硅摄取。基因组研究揭示了与能量守恒、代谢重排以及增强的质子/金属稳态相关的DNA调控元件。在生态方面,耐酸硅藻有助于碳、硅和痕量金属的循环,支持独特的营养网络,并在生物监测和古生态重建中作为可靠指标。尽管实验数据有限,但嗜酸硅藻在生物技术应用方面具有潜力,包括仿生纳米材料、酸性光生物反应器中富含脂质的生物燃料以及基于生物膜的修复。我们确定了基因组资源、分类分辨率和培养方法方面的关键研究差距,并提出了一个整合组学、环境DNA和工程生物反应器的多学科议程。这一综合研究强调了耐酸硅藻在理解和应对水生酸化方面的生态和生物技术价值。