Hageter John, DelGaudio Audrey, Leathery Maegan, Johnson Braxton, Raupp Tegan, Holcomb James, Treviño Axel Faz, Jonaitis Julius, Bridi Morgan S, Dacks Andrew, Horstick Eric J
West Virginia University Department of Biology, Morgantown, WV, USA 26506.
Case Western Reserve University, Department of Biology, Cleveland, OH, USA 44106.
bioRxiv. 2025 Aug 23:2025.08.19.671108. doi: 10.1101/2025.08.19.671108.
Functional imaging using genetically encoded indicators, such as GCaMP, has become a foundational tool for in vivo experiments and allows for the analysis of cellular dynamics, sensory processing, and cellular communication. However, large scale or complex functional imaging experiments pose analytical challenges. Many programs have worked to create pipelines to address these challenges, however, most platforms require proprietary software, impose operational restrictions, offer limited outputs, or require significant knowledge of various programming languages, which collectively can limit utility. To address this, we designed MCA (a Multicellular Analysis toolkit) to work with ImageJ, a widely used open-source software which has been the standard image analysis platform for the last 30 years. We developed MCA to be visually intuitive, utilizing ImageJ's platform to generate new images based on completed tasks so users can visually see each step in the analysis pipeline. In addition, MCA implements a user-friendly GUI providing a simple interface which resembles other native ImageJ plugins. We incorporated functionality for rigid registration to correct motion artifacts, algorithms for cell body prediction, and methods for annotating cells and exporting data. For cell prediction, we trained a custom model in Cellpose 2.0 for segmentation of nuclei expressing pan-neuronal nuclear localized GCaMP in zebrafish. We validated the accuracy of MCA output to previously published zebrafish calcium imaging data which elicited visually evoked neuronal responses. To show the versatility of MCA, we also show that our software can be utilized for multiple sensory modalities, brain regions, and multiple model organisms including and mouse. Together these data show that MCA is viable for extracting calcium dynamics in a user-friendly environment for multiple forms of functional imaging.
使用基因编码指示剂(如GCaMP)的功能成像已成为体内实验的基础工具,并可用于分析细胞动态、感觉处理和细胞通讯。然而,大规模或复杂的功能成像实验带来了分析挑战。许多程序致力于创建管道来应对这些挑战,但是,大多数平台需要专有软件,施加操作限制,提供有限的输出,或者需要对各种编程语言有大量了解,这些因素共同限制了其效用。为了解决这个问题,我们设计了MCA(多细胞分析工具包),使其与ImageJ配合使用,ImageJ是一款广泛使用的开源软件,在过去30年中一直是标准的图像分析平台。我们开发的MCA在视觉上直观易懂,利用ImageJ平台根据完成的任务生成新图像,以便用户能够直观地看到分析管道中的每一步。此外,MCA实现了一个用户友好的图形用户界面(GUI),提供了一个类似于其他原生ImageJ插件的简单接口。我们纳入了用于刚性配准以校正运动伪影的功能、细胞体预测算法以及细胞注释和数据导出方法。对于细胞预测,我们在Cellpose 2.0中训练了一个自定义模型,用于对斑马鱼中表达泛神经元核定位GCaMP的细胞核进行分割。我们将MCA输出的准确性与先前发表的引发视觉诱发神经元反应的斑马鱼钙成像数据进行了验证。为了展示MCA的多功能性,我们还表明我们的软件可用于多种感觉模态、脑区以及包括小鼠在内的多种模式生物。这些数据共同表明,MCA在用户友好的环境中对于多种形式的功能成像提取钙动力学是可行的。