Suppr超能文献

多光子荧光显微镜用于活体成像。

Multiphoton fluorescence microscopy for in vivo imaging.

机构信息

School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA.

Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA.

出版信息

Cell. 2024 Aug 22;187(17):4458-4487. doi: 10.1016/j.cell.2024.07.036.

Abstract

Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.

摘要

多光子荧光显微镜(MPFM)是光学成像领域的一项重大突破,尤其适用于研究活生物体内部深处的生物组织。MPFM 通过利用将荧光发射主要限制在显微镜焦平面内的非线性激发,克服了异质组织中光的强烈散射。这使得在完整组织内部进行高分辨率成像成为可能,并为结构和功能研究开辟了新途径。MPFM 已经得到了广泛的应用,并为深入了解复杂的生物过程带来了许多科学发现和见解。如今,MPFM 是许多研究领域不可或缺的工具。其多功能性和有效性使其成为研究人员在其天然环境中研究细胞和亚细胞水平生物现象的首选技术。在这篇综述中,介绍了 MPFM 的原理、实现、功能和局限性。详细回顾了 MPFM 在神经科学、癌症生物学和免疫学三个应用领域的应用,并将其作为将 MPFM 应用于生物研究的范例。

相似文献

1
Multiphoton fluorescence microscopy for in vivo imaging.
Cell. 2024 Aug 22;187(17):4458-4487. doi: 10.1016/j.cell.2024.07.036.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
4
Multimodal Optical Imaging Platform for Studying Cellular Metabolism.
J Vis Exp. 2025 Jun 6(220). doi: 10.3791/67906.
7
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.
9
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
10
Differently different?: A commentary on the emerging social cognitive neuroscience of female autism.
Biol Sex Differ. 2024 Jun 13;15(1):49. doi: 10.1186/s13293-024-00621-3.

引用本文的文献

1
MCA: A Multicellular analysis Calcium Imaging toolbox for ImageJ.
bioRxiv. 2025 Aug 23:2025.08.19.671108. doi: 10.1101/2025.08.19.671108.
2
Construction of a whole-brain panorama for glioma vasculature reveals tumor heterogeneity and blood-brain barrier disruption.
Sci Adv. 2025 Jul 25;11(30):eadw8330. doi: 10.1126/sciadv.adw8330. Epub 2025 Jul 23.
3
Multiphoton Neurophotonics: Recent Advances in Imaging and Manipulating Neuronal Circuits.
ACS Photonics. 2025 Apr 4;12(7):3296-3318. doi: 10.1021/acsphotonics.4c02101. eCollection 2025 Jul 16.
4
Harnessing 3D cell models and high-resolution imaging to unveil the mechanisms of nanoparticle-mediated drug delivery.
Front Bioeng Biotechnol. 2025 Jul 7;13:1606573. doi: 10.3389/fbioe.2025.1606573. eCollection 2025.
5
3D visualization of uterus and ovary: tissue clearing techniques and biomedical applications.
Front Bioeng Biotechnol. 2025 Jul 7;13:1610539. doi: 10.3389/fbioe.2025.1610539. eCollection 2025.
6
Line-scan chromatic confocal microscopy for multi-depth imaging of skin tissue using deconvolution.
Biomed Opt Express. 2025 May 29;16(6):2516-2527. doi: 10.1364/BOE.562118. eCollection 2025 Jun 1.
7
A Multimodal Adaptive Optical Microscope For Imaging from Molecules to Organisms.
bioRxiv. 2025 Jun 3:2025.06.02.657494. doi: 10.1101/2025.06.02.657494.
9
Innovating beyond electrophysiology through multimodal neural interfaces.
Nat Rev Electr Eng. 2025 Jan;2(1):42-57. doi: 10.1038/s44287-024-00121-x. Epub 2024 Dec 16.
10
Three-photon microscopy: an emerging technique for deep intravital brain imaging.
Nat Rev Neurosci. 2025 Jun 20. doi: 10.1038/s41583-025-00937-y.

本文引用的文献

1
High-throughput volumetric mapping of synaptic transmission.
Nat Methods. 2024 Jul;21(7):1298-1305. doi: 10.1038/s41592-024-02309-3. Epub 2024 Jun 19.
2
High-throughput deep tissue two-photon microscopy at kilohertz frame rates.
Optica. 2023 Jun 20;10(6):763-769. doi: 10.1364/optica.487272. Epub 2023 Jun 15.
3
Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis.
Nat Neurosci. 2024 May;27(5):846-861. doi: 10.1038/s41593-024-01613-7. Epub 2024 Mar 27.
4
Site-specific regulation of Th2 differentiation within lymph node microenvironments.
J Exp Med. 2024 Apr 1;221(4). doi: 10.1084/jem.20231282. Epub 2024 Mar 4.
5
Identification of direct connections between the dura and the brain.
Nature. 2024 Mar;627(8002):165-173. doi: 10.1038/s41586-023-06993-7. Epub 2024 Feb 7.
6
Microglia regulate sleep through calcium-dependent modulation of norepinephrine transmission.
Nat Neurosci. 2024 Feb;27(2):249-258. doi: 10.1038/s41593-023-01548-5. Epub 2024 Jan 18.
7
Exocrine gland-resident memory CD8 T cells use mechanosensing for tissue surveillance.
Sci Immunol. 2023 Dec 22;8(90):eadd5724. doi: 10.1126/sciimmunol.add5724.
8
Two-photon calcium imaging of neuronal activity.
Nat Rev Methods Primers. 2022;2(1). doi: 10.1038/s43586-022-00147-1. Epub 2022 Sep 1.
9
Fast wavefront shaping for two-photon brain imaging with multipatch correction.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2305593120. doi: 10.1073/pnas.2305593120. Epub 2023 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验