Shi Yike Teresa, Martin Michael A, Weissman Daniel B, Koelle Katia
Department of Biology, Emory University, Atlanta, GA, USA.
Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
bioRxiv. 2025 Aug 30:2025.08.27.672713. doi: 10.1101/2025.08.27.672713.
The evolutionary dynamics of seasonal influenza A viruses (IAVs) have been well characterized at the population level, with antigenic drift known to be a major force in driving strain turnover. The evolution of IAV populations at the within-host level, however, is still less well characterized. Improving our understanding of within-host IAV evolution has the potential to shed light on the source of new strains, including new antigenic variants, at the population level. Existing studies have pointed towards the role that stochastic processes play in shaping within-host viral evolution in acute infections of both humans and pigs. Here, we apply a population genetic model called the 'Beta-with-Spikes' approximation to longitudinal intrahost Single Nucleotide Variant (iSNV) frequency data to quantify the extent of genetic drift acting on IAV populations at the within-host scale. We estimate small effective population sizes in both human IAV infections (, , 95% confidence interval: [22-72]) and swine IAV infections ( , 95% confidence interval: [8-14]). Moreover, we evaluate the consistency of the observed iSNV dynamics with Wright-Fisher model simulations. For the human IAV dataset that we analyze, we find that observed within-host IAV evolutionary dynamics are consistent with this classic model at the estimated low effective population size. However, for the swine IAV dataset, we find statistical evidence for rejecting the classic Wright-Fisher model as the only process governing within-host iSNV frequency dynamics. Our results contribute to the growing number of studies that point towards the important role of genetic drift in shaping patterns of genetic diversity in IAV populations within acutely infected hosts. It further raises questions about whether and what other processes, such as spatial compartmentalization, viral progeny production dynamics with strong skew, or selection, may be needed to explain patterns of within-host IAV evolution.
季节性甲型流感病毒(IAV)在群体水平上的进化动态已得到充分表征,已知抗原漂移是推动毒株更替的主要力量。然而,IAV群体在宿主内水平上的进化仍不太清楚。更好地理解宿主内IAV进化有可能揭示群体水平上新毒株(包括新的抗原变体)的来源。现有研究指出了随机过程在塑造人类和猪急性感染中宿主内病毒进化方面所起的作用。在这里,我们将一种名为“带尖峰的贝塔”近似的群体遗传模型应用于宿主内纵向单核苷酸变异(iSNV)频率数据,以量化在宿主内尺度上作用于IAV群体的遗传漂变程度。我们估计人类IAV感染( , ,95%置信区间:[22 - 72])和猪IAV感染( ,95%置信区间:[8 - 14])中的有效群体大小都很小。此外,我们评估观察到的iSNV动态与赖特 - 费希尔模型模拟的一致性。对于我们分析的人类IAV数据集,我们发现在估计的低有效群体大小下,观察到的宿主内IAV进化动态与这个经典模型一致。然而,对于猪IAV数据集,我们发现有统计证据拒绝将经典的赖特 - 费希尔模型作为唯一控制宿主内iSNV频率动态的过程。我们的结果为越来越多的研究做出了贡献,这些研究指出了遗传漂变在塑造急性感染宿主内IAV群体遗传多样性模式方面的重要作用。它进一步引发了关于是否以及需要哪些其他过程(如空间分隔、具有强烈偏态的病毒子代产生动态或选择)来解释宿主内IAV进化模式的问题。