Chasseur Alexis S, Bellefroid Maxime, Galais Mathilde, Gong Meijiao, Lombard Pierre, Mathieu Sarah, Pecquet Amandine, Plant Estelle, Ponsard Camille, Vreux Laure, Yague-Sanz Carlo, Dewals Benjamin G, Gillet Nicolas A, Muylkens Benoît, Van Lint Carine M, Coupeau Damien
Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium.
Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
PLoS Pathog. 2025 Sep 11;21(9):e1013448. doi: 10.1371/journal.ppat.1013448. eCollection 2025 Sep.
Non-coding RNAs play a significant role in viral infection cycles, with recent attention focused on circular RNAs (circRNAs) originating from various viral families. Notably, these circRNAs have been associated with oncogenesis and alterations in viral fitness. However, identifying their expression has proven more challenging than initially anticipated due to unique viral characteristics. This challenge has the potential to impede progress in our understanding of viral circRNAs. Key hurdles in working with viral genomes include: (1) the presence of repetitive regions that can lead to misalignment of sequencing reads, and (2) unconventional splicing mechanisms that deviate from conserved eukaryotic patterns. To address these challenges, we developed vCircTrappist, a bioinformatic pipeline tailored to identify backsplicing events and pinpoint loci expressing circRNAs in RNA sequencing data. Applying this pipeline, we obtained novel insights from both new and existing datasets encompassing a range of animal and human pathogens belonging to Herpesviridae, Retroviridae, Adenoviridae, Flaviviridae and Orthomyxoviridae families. Subsequent RT-PCR and Sanger sequencings validated the accuracy of the developed bioinformatic tool for a selection of new candidate virus-derived circRNAs. These findings demonstrate that vCircTrappist is an open and unbiased approach for comprehensive identification of virus-derived circRNAs.
非编码RNA在病毒感染周期中发挥着重要作用,近期的研究重点集中在源自各种病毒家族的环状RNA(circRNA)上。值得注意的是,这些circRNA与肿瘤发生和病毒适应性改变有关。然而,由于病毒的独特特性,鉴定它们的表达比最初预期的更具挑战性。这一挑战有可能阻碍我们对病毒circRNA的理解取得进展。处理病毒基因组的主要障碍包括:(1)存在可导致测序读数比对错误的重复区域,以及(2)偏离保守真核模式的非常规剪接机制。为应对这些挑战,我们开发了vCircTrappist,这是一种生物信息学流程,专门用于识别RNA测序数据中的反向剪接事件并确定表达circRNA的位点。应用该流程,我们从新的和现有的数据集中获得了新的见解,这些数据集涵盖了属于疱疹病毒科、逆转录病毒科、腺病毒科、黄病毒科和正粘病毒科的一系列动物和人类病原体。随后的RT-PCR和桑格测序验证了所开发的生物信息学工具对一系列新的候选病毒衍生circRNA的准确性。这些发现表明,vCircTrappist是一种用于全面鉴定病毒衍生circRNA的开放且无偏见的方法。