Suppr超能文献

ACP-EPC:一种利用预训练蛋白质语言模型和多视图特征提取策略进行抗癌肽预测的可解释深度学习框架。

ACP-EPC: an interpretable deep learning framework for anticancer peptide prediction utilizing pre-trained protein language model and multi-view feature extracting strategy.

作者信息

Lv Jingwei, Li Kexin, Wang Yike, Xu Junlin, Meng Yajie, Cui Feifei, Wei Leyi, Zhang Qingchen, Zhang Zilong

机构信息

School of Computer Science and Technology, Hainan University, Haikou, 570228, China.

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.

出版信息

Mol Divers. 2025 Sep 13. doi: 10.1007/s11030-025-11352-x.

Abstract

Cancer remains a major global health challenge, as conventional chemotherapy often causes extensive damage to healthy cells and leads to severe side effects. Anticancer peptides (ACPs) have emerged as a promising therapeutic alternative, capable of selectively targeting and eliminating cancer cells while improving patient quality of life and treatment outcomes. Nevertheless, identifying ACPs through traditional biological experiments is both labor-intensive and time-consuming. To address this limitation, we developed ACP-EPC, a deep learning framework which predicts ACPs directly from protein sequences. ACP-EPC integrates contextual representations from Evolutionary Scale Modeling 2 (ESM-2) with handcrafted physicochemical descriptors and employs a Cross-Attention mechanism for multimodal feature fusion. The model was rigorously evaluated using tenfold cross-validation and two test sets, ACP135 and ACP99, achieving accuracy of 0.935 and 0.984, respectively. These results substantially outperform existing models, underscoring the advantages of combining diverse feature representations. To promote accessibility, we have also deployed ACP-EPC as a publicly available web server at http://www.bioai-lab.com/ACP-EPC .

摘要

癌症仍然是一项重大的全球健康挑战,因为传统化疗常常会对健康细胞造成广泛损害并导致严重的副作用。抗癌肽(ACP)已成为一种有前景的治疗选择,能够选择性地靶向并消除癌细胞,同时提高患者的生活质量和治疗效果。然而,通过传统生物学实验来鉴定抗癌肽既耗费人力又耗时。为解决这一局限,我们开发了ACP-EPC,这是一个深度学习框架,可直接从蛋白质序列预测抗癌肽。ACP-EPC将来自进化尺度建模2(ESM-2)的上下文表示与手工制作的物理化学描述符相结合,并采用交叉注意力机制进行多模态特征融合。该模型使用十折交叉验证以及两个测试集ACP135和ACP99进行了严格评估,准确率分别达到0.935和0.984。这些结果显著优于现有模型,凸显了组合多种特征表示的优势。为了便于使用,我们还将ACP-EPC作为一个公开可用的网络服务器部署在了http://www.bioai-lab.com/ACP-EPC

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验